Login / Signup
Chi Jin
ORCID
Publication Activity (10 Years)
Years Active: 2012-2024
Publications (10 Years): 126
Top Topics
Function Approximation
Reinforcement Learning
Saddle Points
Distributed Control
Top Venues
CoRR
ICML
NeurIPS
COLT
</>
Publications
</>
Mahsa Bastankhah
,
Viraj Nadkarni
,
Xuechao Wang
,
Chi Jin
,
Sanjeev Kulkarni
,
Pramod Viswanath
Thinking Fast and Slow: Data-Driven Adaptive DeFi Borrow-Lending Protocol.
CoRR
(2024)
Ahmed Khaled
,
Chi Jin
Tuning-Free Stochastic Optimization.
CoRR
(2024)
Jiawei Ge
,
Shange Tang
,
Jianqing Fan
,
Cong Ma
,
Chi Jin
Maximum Likelihood Estimation is All You Need for Well-Specified Covariate Shift.
CoRR
(2023)
Viraj Nadkarni
,
Jiachen Hu
,
Ranvir Rana
,
Chi Jin
,
Sanjeev R. Kulkarni
,
Pramod Viswanath
ZeroSwap: Data-driven Optimal Market Making in DeFi.
CoRR
(2023)
Chung-Wei Lee
,
Qinghua Liu
,
Yasin Abbasi-Yadkori
,
Chi Jin
,
Tor Lattimore
,
Csaba Szepesvári
Context-lumpable stochastic bandits.
CoRR
(2023)
Jiawei Ge
,
Shange Tang
,
Jianqing Fan
,
Chi Jin
On the Provable Advantage of Unsupervised Pretraining.
CoRR
(2023)
Jiachen Hu
,
Han Zhong
,
Chi Jin
,
Liwei Wang
Provable Sim-to-real Transfer in Continuous Domain with Partial Observations.
ICLR
(2023)
Ahmed Khaled
,
Konstantin Mishchenko
,
Chi Jin
DoWG Unleashed: An Efficient Universal Parameter-Free Gradient Descent Method.
CoRR
(2023)
Chengzhuo Ni
,
Yuda Song
,
Xuezhou Zhang
,
Zihan Ding
,
Chi Jin
,
Mengdi Wang
Representation Learning for Low-rank General-sum Markov Games.
ICLR
(2023)
Bowen Yi
,
Chi Jin
,
Lei Wang
,
Guodong Shi
,
Viorela Ila
,
Ian R. Manchester
PEBO-SLAM: Observer design for visual inertial SLAM with convergence guarantees.
CoRR
(2023)
Chung-Wei Lee
,
Qinghua Liu
,
Yasin Abbasi-Yadkori
,
Chi Jin
,
Tor Lattimore
,
Csaba Szepesvári
Context-lumpable stochastic bandits.
NeurIPS
(2023)
Jiachen Hu
,
Han Zhong
,
Chi Jin
,
Liwei Wang
Provable Sim-to-real Transfer in Continuous Domain with Partial Observations.
CoRR
(2022)
Yu Bai
,
Chi Jin
,
Song Mei
,
Tiancheng Yu
Near-Optimal Learning of Extensive-Form Games with Imperfect Information.
CoRR
(2022)
Bowen Yi
,
Chi Jin
,
Ian R. Manchester
Globally convergent visual-feature range estimation with biased inertial measurements.
Autom.
146 (2022)
Qinghua Liu
,
Praneeth Netrapalli
,
Csaba Szepesvári
,
Chi Jin
Optimistic MLE - A Generic Model-based Algorithm for Partially Observable Sequential Decision Making.
CoRR
(2022)
Qinghua Liu
,
Yuanhao Wang
,
Chi Jin
Learning Markov Games with Adversarial Opponents: Efficient Algorithms and Fundamental Limits.
CoRR
(2022)
Jin Wu
,
Ming Liu
,
Yulong Huang
,
Chi Jin
,
Yuanxin Wu
,
Changbin Yu
SE(n)++: An Efficient Solution to Multiple Pose Estimation Problems.
IEEE Trans. Cybern.
52 (5) (2022)
Qinghua Liu
,
Alan Chung
,
Csaba Szepesvári
,
Chi Jin
When Is Partially Observable Reinforcement Learning Not Scary?
COLT
(2022)
Yonathan Efroni
,
Chi Jin
,
Akshay Krishnamurthy
,
Sobhan Miryoosefi
Provable Reinforcement Learning with a Short-Term Memory.
CoRR
(2022)
Yu Bai
,
Chi Jin
,
Song Mei
,
Ziang Song
,
Tiancheng Yu
Efficient Φ-Regret Minimization in Extensive-Form Games via Online Mirror Descent.
CoRR
(2022)
Zihan Ding
,
Dijia Su
,
Qinghua Liu
,
Chi Jin
A Deep Reinforcement Learning Approach for Finding Non-Exploitable Strategies in Two-Player Atari Games.
CoRR
(2022)
Qinghua Liu
,
Alan Chung
,
Csaba Szepesvári
,
Chi Jin
When Is Partially Observable Reinforcement Learning Not Scary?
CoRR
(2022)
Ahmed Khaled
,
Chi Jin
Faster federated optimization under second-order similarity.
CoRR
(2022)
Sobhan Miryoosefi
,
Chi Jin
A Simple Reward-free Approach to Constrained Reinforcement Learning.
ICML
(2022)
Tanner Fiez
,
Chi Jin
,
Praneeth Netrapalli
,
Lillian J. Ratliff
Minimax Optimization with Smooth Algorithmic Adversaries.
ICLR
(2022)
Yu Bai
,
Chi Jin
,
Song Mei
,
Tiancheng Yu
Near-Optimal Learning of Extensive-Form Games with Imperfect Information.
ICML
(2022)
Chengzhuo Ni
,
Yuda Song
,
Xuezhou Zhang
,
Chi Jin
,
Mengdi Wang
Representation Learning for General-sum Low-rank Markov Games.
CoRR
(2022)
Qinghua Liu
,
Csaba Szepesvári
,
Chi Jin
Sample-Efficient Reinforcement Learning of Partially Observable Markov Games.
CoRR
(2022)
Qinghua Liu
,
Yuanhao Wang
,
Chi Jin
Learning Markov Games with Adversarial Opponents: Efficient Algorithms and Fundamental Limits.
ICML
(2022)
Yuanhao Wang
,
Dingwen Kong
,
Yu Bai
,
Chi Jin
Learning Rationalizable Equilibria in Multiplayer Games.
CoRR
(2022)
Chi Jin
,
Qinghua Liu
,
Tiancheng Yu
The Power of Exploiter: Provable Multi-Agent RL in Large State Spaces.
ICML
(2022)
Yonathan Efroni
,
Chi Jin
,
Akshay Krishnamurthy
,
Sobhan Miryoosefi
Provable Reinforcement Learning with a Short-Term Memory.
ICML
(2022)
Xiaoyu Chen
,
Jiachen Hu
,
Chi Jin
,
Lihong Li
,
Liwei Wang
Understanding Domain Randomization for Sim-to-real Transfer.
ICLR
(2022)
Xiaoyu Chen
,
Jiachen Hu
,
Chi Jin
,
Lihong Li
,
Liwei Wang
Understanding Domain Randomization for Sim-to-real Transfer.
CoRR
(2021)
Yaqi Duan
,
Chi Jin
,
Zhiyuan Li
Risk Bounds and Rademacher Complexity in Batch Reinforcement Learning.
CoRR
(2021)
Bowen Yi
,
Chi Jin
,
Ian R. Manchester
Globally convergent visual-feature range estimation with biased inertial measurements.
CoRR
(2021)
Yu Bai
,
Chi Jin
,
Huan Wang
,
Caiming Xiong
Sample-Efficient Learning of Stackelberg Equilibria in General-Sum Games.
NeurIPS
(2021)
Tanner Fiez
,
Chi Jin
,
Praneeth Netrapalli
,
Lillian J. Ratliff
Minimax Optimization with Smooth Algorithmic Adversaries.
CoRR
(2021)
Yu Bai
,
Chi Jin
,
Huan Wang
,
Caiming Xiong
Sample-Efficient Learning of Stackelberg Equilibria in General-Sum Games.
CoRR
(2021)
Yaqi Duan
,
Chi Jin
,
Zhiyuan Li
Risk Bounds and Rademacher Complexity in Batch Reinforcement Learning.
ICML
(2021)
Mo Zhou
,
Rong Ge
,
Chi Jin
A Local Convergence Theory for Mildly Over-Parameterized Two-Layer Neural Network.
CoRR
(2021)
Chi Jin
,
Qinghua Liu
,
Tiancheng Yu
The Power of Exploiter: Provable Multi-Agent RL in Large State Spaces.
CoRR
(2021)
Mo Zhou
,
Rong Ge
,
Chi Jin
A Local Convergence Theory for Mildly Over-Parameterized Two-Layer Neural Network.
COLT
(2021)
Chi Jin
,
Qinghua Liu
,
Yuanhao Wang
,
Tiancheng Yu
V-Learning - A Simple, Efficient, Decentralized Algorithm for Multiagent RL.
CoRR
(2021)
Nilesh Tripuraneni
,
Chi Jin
,
Michael I. Jordan
Provable Meta-Learning of Linear Representations.
ICML
(2021)
Jiachen Hu
,
Xiaoyu Chen
,
Chi Jin
,
Lihong Li
,
Liwei Wang
Near-optimal Representation Learning for Linear Bandits and Linear RL.
CoRR
(2021)
Jiachen Hu
,
Xiaoyu Chen
,
Chi Jin
,
Lihong Li
,
Liwei Wang
Near-Optimal Representation Learning for Linear Bandits and Linear RL.
ICML
(2021)
Chi Jin
,
Praneeth Netrapalli
,
Rong Ge
,
Sham M. Kakade
,
Michael I. Jordan
On Nonconvex Optimization for Machine Learning: Gradients, Stochasticity, and Saddle Points.
J. ACM
68 (2) (2021)
Chi Jin
,
Qinghua Liu
,
Sobhan Miryoosefi
Bellman Eluder Dimension: New Rich Classes of RL Problems, and Sample-Efficient Algorithms.
CoRR
(2021)
Zhe Zhang
,
Chi Jin
,
Yi Tang
,
Chaoyu Dong
,
Pengfeng Lin
,
Yang Mi
,
Peng Wang
A Modulized Three-Port Interlinking Converter for Hybrid AC/DC/DS Microgrids Featured With a Decentralized Power Management Strategy.
IEEE Trans. Ind. Electron.
68 (12) (2021)
Chi Jin
,
Qinghua Liu
,
Sobhan Miryoosefi
Bellman Eluder Dimension: New Rich Classes of RL Problems, and Sample-Efficient Algorithms.
NeurIPS
(2021)
Sobhan Miryoosefi
,
Chi Jin
A Simple Reward-free Approach to Constrained Reinforcement Learning.
CoRR
(2021)
Qinghua Liu
,
Tiancheng Yu
,
Yu Bai
,
Chi Jin
A Sharp Analysis of Model-based Reinforcement Learning with Self-Play.
ICML
(2021)
Bowen Yi
,
Chi Jin
,
Lei Wang
,
Guodong Shi
,
Ian R. Manchester
An almost globally convergent observer for visual SLAM without persistent excitation.
CDC
(2021)
Dipendra Misra
,
Qinghua Liu
,
Chi Jin
,
John Langford
Provable Rich Observation Reinforcement Learning with Combinatorial Latent States.
ICLR
(2021)
Bowen Yi
,
Chi Jin
,
Lei Wang
,
Guodong Shi
,
Ian R. Manchester
An almost globally convergent observer for visual SLAM without persistent excitation.
CoRR
(2021)
Chi Jin
,
Tiancheng Jin
,
Haipeng Luo
,
Suvrit Sra
,
Tiancheng Yu
Learning Adversarial Markov Decision Processes with Bandit Feedback and Unknown Transition.
ICML
(2020)
Liang Shao
,
Chi Jin
,
Arno Eichberger
,
Cornelia Lex
Grid Search Based Tire-Road Friction Estimation.
IEEE Access
8 (2020)
Nilesh Tripuraneni
,
Michael I. Jordan
,
Chi Jin
On the Theory of Transfer Learning: The Importance of Task Diversity.
NeurIPS
(2020)
Chi Jin
,
Akshay Krishnamurthy
,
Max Simchowitz
,
Tiancheng Yu
Reward-Free Exploration for Reinforcement Learning.
CoRR
(2020)
Chi Jin
,
Akshay Krishnamurthy
,
Max Simchowitz
,
Tiancheng Yu
Reward-Free Exploration for Reinforcement Learning.
ICML
(2020)
Chi Jin
,
Sham M. Kakade
,
Akshay Krishnamurthy
,
Qinghua Liu
Sample-Efficient Reinforcement Learning of Undercomplete POMDPs.
CoRR
(2020)
Chi Jin
,
Zhuoran Yang
,
Zhaoran Wang
,
Michael I. Jordan
Provably efficient reinforcement learning with linear function approximation.
COLT
(2020)
Zhuoran Yang
,
Chi Jin
,
Zhaoran Wang
,
Mengdi Wang
,
Michael I. Jordan
Provably Efficient Reinforcement Learning with Kernel and Neural Function Approximations.
NeurIPS
(2020)
Chi Jin
,
Sham M. Kakade
,
Akshay Krishnamurthy
,
Qinghua Liu
Sample-Efficient Reinforcement Learning of Undercomplete POMDPs.
NeurIPS
(2020)
Tianyi Lin
,
Chi Jin
,
Michael I. Jordan
Near-Optimal Algorithms for Minimax Optimization.
CoRR
(2020)
Qinghua Liu
,
Tiancheng Yu
,
Yu Bai
,
Chi Jin
A Sharp Analysis of Model-based Reinforcement Learning with Self-Play.
CoRR
(2020)
Chi Jin
,
Praneeth Netrapalli
,
Michael I. Jordan
What is Local Optimality in Nonconvex-Nonconcave Minimax Optimization?
ICML
(2020)
Yu Bai
,
Chi Jin
Provable Self-Play Algorithms for Competitive Reinforcement Learning.
ICML
(2020)
Yu Bai
,
Chi Jin
Provable Self-Play Algorithms for Competitive Reinforcement Learning.
CoRR
(2020)
Yu Bai
,
Chi Jin
,
Tiancheng Yu
Near-Optimal Reinforcement Learning with Self-Play.
CoRR
(2020)
Nilesh Tripuraneni
,
Michael I. Jordan
,
Chi Jin
On the Theory of Transfer Learning: The Importance of Task Diversity.
CoRR
(2020)
Qi Cai
,
Zhuoran Yang
,
Chi Jin
,
Zhaoran Wang
Provably Efficient Exploration in Policy Optimization.
ICML
(2020)
Tianyi Lin
,
Chi Jin
,
Michael I. Jordan
On Gradient Descent Ascent for Nonconvex-Concave Minimax Problems.
ICML
(2020)
Tianyi Lin
,
Chi Jin
,
Michael I. Jordan
Near-Optimal Algorithms for Minimax Optimization.
COLT
(2020)
Pengfeng Lin
,
Chuanlin Zhang
,
Jinyu Wang
,
Chi Jin
,
Peng Wang
On Autonomous Large-Signal Stabilization for Islanded Multibus DC Microgrids: A Uniform Nonsmooth Control Scheme.
IEEE Trans. Ind. Electron.
67 (6) (2020)
Nilesh Tripuraneni
,
Chi Jin
,
Michael I. Jordan
Provable Meta-Learning of Linear Representations.
CoRR
(2020)
Zhuoran Yang
,
Chi Jin
,
Zhaoran Wang
,
Mengdi Wang
,
Michael I. Jordan
Bridging Exploration and General Function Approximation in Reinforcement Learning: Provably Efficient Kernel and Neural Value Iterations.
CoRR
(2020)
Yu Bai
,
Chi Jin
,
Tiancheng Yu
Near-Optimal Reinforcement Learning with Self-Play.
NeurIPS
(2020)
Pengfeng Lin
,
Chi Jin
,
Jianfang Xiao
,
Xiaoqiang Li
,
Donghan Shi
,
Yi Tang
,
Peng Wang
A Distributed Control Architecture for Global System Economic Operation in Autonomous Hybrid AC/DC Microgrids.
IEEE Trans. Smart Grid
10 (3) (2019)
Qi Cai
,
Zhuoran Yang
,
Chi Jin
,
Zhaoran Wang
Provably Efficient Exploration in Policy Optimization.
CoRR
(2019)
Chi Jin
,
Praneeth Netrapalli
,
Rong Ge
,
Sham M. Kakade
,
Michael I. Jordan
A Short Note on Concentration Inequalities for Random Vectors with SubGaussian Norm.
CoRR
(2019)
Chi Jin
,
Keqin Gu
,
Islam Boussaada
,
Silviu-Iulian Niculescu
Stability Analysis of a More General Class of Systems With Delay-Dependent Coefficients.
IEEE Trans. Autom. Control.
64 (5) (2019)
Chi Jin
,
Praneeth Netrapalli
,
Rong Ge
,
Sham M. Kakade
,
Michael I. Jordan
Stochastic Gradient Descent Escapes Saddle Points Efficiently.
CoRR
(2019)
Chi Jin
,
Zhuoran Yang
,
Zhaoran Wang
,
Michael I. Jordan
Provably Efficient Reinforcement Learning with Linear Function Approximation.
CoRR
(2019)
Pengfeng Lin
,
Peng Wang
,
Chi Jin
,
Jianfang Xiao
,
Xiaoqiang Li
,
Fanghong Guo
,
Chuanlin Zhang
A Distributed Power Management Strategy for Multi-Paralleled Bidirectional Interlinking Converters in Hybrid AC/DC Microgrids.
IEEE Trans. Smart Grid
10 (5) (2019)
Tianyi Lin
,
Chi Jin
,
Michael I. Jordan
On Gradient Descent Ascent for Nonconvex-Concave Minimax Problems.
CoRR
(2019)
Chi Jin
,
Praneeth Netrapalli
,
Michael I. Jordan
Minmax Optimization: Stable Limit Points of Gradient Descent Ascent are Locally Optimal.
CoRR
(2019)
Chi Jin
,
Lydia T. Liu
,
Rong Ge
,
Michael I. Jordan
Minimizing Nonconvex Population Risk from Rough Empirical Risk.
CoRR
(2018)
Yuansi Chen
,
Chi Jin
,
Bin Yu
Stability and Convergence Trade-off of Iterative Optimization Algorithms.
CoRR
(2018)
Chi Jin
,
Keqin Gu
,
Silviu-Iulian Niculescu
,
Islam Boussaada
Stability Analysis of Systems With Delay-Dependent Coefficients: An Overview.
IEEE Access
6 (2018)
Yi-An Ma
,
Yuansi Chen
,
Chi Jin
,
Nicolas Flammarion
,
Michael I. Jordan
Sampling Can Be Faster Than Optimization.
CoRR
(2018)
Junjun Wang
,
Chi Jin
,
Peng Wang
A Uniform Control Strategy for the Interlinking Converter in Hierarchical Controlled Hybrid AC/DC Microgrids.
IEEE Trans. Ind. Electron.
65 (8) (2018)
Chi Jin
,
Zeyuan Allen-Zhu
,
Sébastien Bubeck
,
Michael I. Jordan
Is Q-learning Provably Efficient?
CoRR
(2018)
Chi Jin
,
Praneeth Netrapalli
,
Michael I. Jordan
Accelerated Gradient Descent Escapes Saddle Points Faster than Gradient Descent.
COLT
(2018)
Chi Jin
,
Ruochun Jin
,
Kai Chen
,
Yong Dou
A Community Detection Approach to Cleaning Extremely Large Face Database.
Comput. Intell. Neurosci.
2018 (2018)
Nilesh Tripuraneni
,
Mitchell Stern
,
Chi Jin
,
Jeffrey Regier
,
Michael I. Jordan
Stochastic Cubic Regularization for Fast Nonconvex Optimization.
NeurIPS
(2018)
Chi Jin
,
Zeyuan Allen-Zhu
,
Sébastien Bubeck
,
Michael I. Jordan
Is Q-Learning Provably Efficient?
NeurIPS
(2018)
Chi Jin
,
Keqin Gu
,
Silviu-Iulian Niculescu
,
Islam Boussaada
Stability Analysis of Systems with Delay-Dependent Coefficients Subject to Some Particular Delay Structure.
ECC
(2018)
Chi Jin
,
Lydia T. Liu
,
Rong Ge
,
Michael I. Jordan
On the Local Minima of the Empirical Risk.
NeurIPS
(2018)