​
Login / Signup
Michael Chang
Publication Activity (10 Years)
Years Active: 2016-2023
Publications (10 Years): 20
Top Topics
Credit Assignment
Iterative Refinement
Object Representations
Reinforcement Learning
Top Venues
CoRR
NeurIPS
ICML
ICLR (Poster)
</>
Publications
</>
Bhishma Dedhia
,
Michael Chang
,
Jake Snell
,
Tom Griffiths
,
Niraj K. Jha
Im-Promptu: In-Context Composition from Image Prompts.
NeurIPS
(2023)
Michael Chang
,
Alyssa L. Dayan
,
Franziska Meier
,
Thomas L. Griffiths
,
Sergey Levine
,
Amy Zhang
Neural Constraint Satisfaction: Hierarchical Abstraction for Combinatorial Generalization in Object Rearrangement.
CoRR
(2023)
Michael Chang
,
Alyssa L. Dayan
,
Franziska Meier
,
Thomas L. Griffiths
,
Sergey Levine
,
Amy Zhang
Hierarchical Abstraction for Combinatorial Generalization in Object Rearrangement.
ICLR
(2023)
Michael Chang
,
Tom Griffiths
,
Sergey Levine
Object Representations as Fixed Points: Training Iterative Refinement Algorithms with Implicit Differentiation.
NeurIPS
(2022)
Michael Chang
,
Thomas L. Griffiths
,
Sergey Levine
Object Representations as Fixed Points: Training Iterative Refinement Algorithms with Implicit Differentiation.
CoRR
(2022)
Arnaud Fickinger
,
Natasha Jaques
,
Samyak Parajuli
,
Michael Chang
,
Nicholas Rhinehart
,
Glen Berseth
,
Stuart Russell
,
Sergey Levine
Explore and Control with Adversarial Surprise.
CoRR
(2021)
Michael Chang
,
Sidhant Kaushik
,
Sergey Levine
,
Tom Griffiths
Modularity in Reinforcement Learning via Algorithmic Independence in Credit Assignment.
ICML
(2021)
Michael Chang
,
Sidhant Kaushik
,
Sergey Levine
,
Thomas L. Griffiths
Modularity in Reinforcement Learning via Algorithmic Independence in Credit Assignment.
CoRR
(2021)
Michael Chang
,
Sidhant Kaushik
,
S. Matthew Weinberg
,
Tom Griffiths
,
Sergey Levine
Decentralized Reinforcement Learning: Global Decision-Making via Local Economic Transactions.
ICML
(2020)
Michael Chang
,
Sidhant Kaushik
,
S. Matthew Weinberg
,
Thomas L. Griffiths
,
Sergey Levine
Decentralized Reinforcement Learning: Global Decision-Making via Local Economic Transactions.
CoRR
(2020)
Xue Bin Peng
,
Michael Chang
,
Grace Zhang
,
Pieter Abbeel
,
Sergey Levine
MCP: Learning Composable Hierarchical Control with Multiplicative Compositional Policies.
CoRR
(2019)
Rishi Veerapaneni
,
John D. Co-Reyes
,
Michael Chang
,
Michael Janner
,
Chelsea Finn
,
Jiajun Wu
,
Joshua B. Tenenbaum
,
Sergey Levine
Entity Abstraction in Visual Model-Based Reinforcement Learning.
CoRR
(2019)
Xue Bin Peng
,
Michael Chang
,
Grace Zhang
,
Pieter Abbeel
,
Sergey Levine
MCP: Learning Composable Hierarchical Control with Multiplicative Compositional Policies.
NeurIPS
(2019)
Rishi Veerapaneni
,
John D. Co-Reyes
,
Michael Chang
,
Michael Janner
,
Chelsea Finn
,
Jiajun Wu
,
Joshua B. Tenenbaum
,
Sergey Levine
Entity Abstraction in Visual Model-Based Reinforcement Learning.
CoRL
(2019)
Michael Chang
,
Abhishek Gupta
,
Sergey Levine
,
Thomas L. Griffiths
Automatically Composing Representation Transformations as a Means for Generalization.
ICLR (Poster)
(2019)
Sophia Sanborn
,
David Bourgin
,
Michael Chang
,
Tom Griffiths
Representational efficiency outweighs action efficiency in human program induction.
CogSci
(2018)
Michael Chang
,
Abhishek Gupta
,
Sergey Levine
,
Thomas L. Griffiths
Automatically Composing Representation Transformations as a Means for Generalization.
CoRR
(2018)
Sophia Sanborn
,
David D. Bourgin
,
Michael Chang
,
Thomas L. Griffiths
Representational efficiency outweighs action efficiency in human program induction.
CoRR
(2018)
Michael Chang
,
Tomer Ullman
,
Antonio Torralba
,
Joshua B. Tenenbaum
A Compositional Object-Based Approach to Learning Physical Dynamics.
ICLR (Poster)
(2017)
William F. Whitney
,
Michael Chang
,
Tejas D. Kulkarni
,
Joshua B. Tenenbaum
Understanding Visual Concepts with Continuation Learning.
CoRR
(2016)