Login / Signup
Evan Racah
Publication Activity (10 Years)
Years Active: 2016-2022
Publications (10 Years): 21
Top Topics
Neural Network
Imitation Learning
Matrix Factorization
Climate Data
Top Venues
CoRR
NeurIPS
IEEE BigData
NIPS
</>
Publications
</>
Eli Bronstein
,
Mark Palatucci
,
Dominik Notz
,
Brandyn White
,
Alex Kuefler
,
Yiren Lu
,
Supratik Paul
,
Payam Nikdel
,
Paul Mougin
,
Hongge Chen
,
Justin Fu
,
Austin Abrams
,
Punit Shah
,
Evan Racah
,
Benjamin Frenkel
,
Shimon Whiteson
,
Dragomir Anguelov
Hierarchical Model-Based Imitation Learning for Planning in Autonomous Driving.
CoRR
(2022)
Eli Bronstein
,
Mark Palatucci
,
Dominik Notz
,
Brandyn White
,
Alex Kuefler
,
Yiren Lu
,
Supratik Paul
,
Payam Nikdel
,
Paul Mougin
,
Hongge Chen
,
Justin Fu
,
Austin Abrams
,
Punit Shah
,
Evan Racah
,
Benjamin Frenkel
,
Shimon Whiteson
,
Dragomir Anguelov
Hierarchical Model-Based Imitation Learning for Planning in Autonomous Driving.
IROS
(2022)
Harm van Seijen
,
Hadi Nekoei
,
Evan Racah
,
Sarath Chandar
The LoCA Regret: A Consistent Metric to Evaluate Model-Based Behavior in Reinforcement Learning.
CoRR
(2020)
Harm van Seijen
,
Hadi Nekoei
,
Evan Racah
,
Sarath Chandar
The LoCA Regret: A Consistent Metric to Evaluate Model-Based Behavior in Reinforcement Learning.
NeurIPS
(2020)
Evan Racah
,
Sarath Chandar
Slot Contrastive Networks: A Contrastive Approach for Representing Objects.
CoRR
(2020)
Ankesh Anand
,
Evan Racah
,
Sherjil Ozair
,
Yoshua Bengio
,
Marc-Alexandre Côté
,
R. Devon Hjelm
Unsupervised State Representation Learning in Atari.
CoRR
(2019)
Evan Racah
,
Christopher J. Pal
Supervise Thyself: Examining Self-Supervised Representations in Interactive Environments.
CoRR
(2019)
Ankesh Anand
,
Evan Racah
,
Sherjil Ozair
,
Yoshua Bengio
,
Marc-Alexandre Côté
,
R. Devon Hjelm
Unsupervised State Representation Learning in Atari.
NeurIPS
(2019)
Thorsten Kurth
,
Jian Zhang
,
Nadathur Satish
,
Evan Racah
,
Ioannis Mitliagkas
,
Md. Mostofa Ali Patwary
,
Tareq M. Malas
,
Narayanan Sundaram
,
Wahid Bhimji
,
Mikhail Smorkalov
,
Jack Deslippe
,
Mikhail Shiryaev
,
Srinivas Sridharan
,
Prabhat
,
Pradeep Dubey
Deep learning at 15PF: supervised and semi-supervised classification for scientific data.
SC
(2017)
Evan Racah
,
Christopher Beckham
,
Tegan Maharaj
,
Samira Ebrahimi Kahou
,
Prabhat
,
Chris Pal
ExtremeWeather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events.
NIPS
(2017)
Thorsten Kurth
,
Jian Zhang
,
Nadathur Satish
,
Ioannis Mitliagkas
,
Evan Racah
,
Md. Mostofa Ali Patwary
,
Tareq M. Malas
,
Narayanan Sundaram
,
Wahid Bhimji
,
Mikhail Smorkalov
,
Jack Deslippe
,
Mikhail Shiryaev
,
Srinivas Sridharan
,
Prabhat
,
Pradeep Dubey
Deep Learning at 15PF: Supervised and Semi-Supervised Classification for Scientific Data.
CoRR
(2017)
Wahid Bhimji
,
Steven Andrew Farrell
,
Thorsten Kurth
,
Michela Paganini
,
Prabhat
,
Evan Racah
Deep Neural Networks for Physics Analysis on low-level whole-detector data at the LHC.
CoRR
(2017)
Alex Gittens
,
Jey Kottalam
,
Jiyan Yang
,
Michael F. Ringenburg
,
Jatin Chhugani
,
Evan Racah
,
Mohitdeep Singh
,
Yushu Yao
,
Curt Fischer
,
Oliver Rübel
,
Benjamin P. Bowen
,
Norman G. Lewis
,
Michael W. Mahoney
,
Venkat Krishnamurthy
,
Prabhat
A Multi-Platform Evaluation of the Randomized CX Low-Rank Matrix Factorization in Spark.
IPDPS Workshops
(2016)
Alex Gittens
,
Aditya Devarakonda
,
Evan Racah
,
Michael F. Ringenburg
,
Lisa Gerhardt
,
Jey Kottalam
,
Jialin Liu
,
Kristyn J. Maschhoff
,
Shane Canon
,
Jatin Chhugani
,
Pramod Sharma
,
Jiyan Yang
,
James Demmel
,
Jim Harrell
,
Venkat Krishnamurthy
,
Michael W. Mahoney
,
Prabhat
Matrix factorizations at scale: A comparison of scientific data analytics in spark and C+MPI using three case studies.
IEEE BigData
(2016)
Yunjie Liu
,
Evan Racah
,
Prabhat
,
Joaquin Correa
,
Amir Khosrowshahi
,
David Lavers
,
Kenneth Kunkel
,
Michael F. Wehner
,
William D. Collins
Application of Deep Convolutional Neural Networks for Detecting Extreme Weather in Climate Datasets.
CoRR
(2016)
Md. Mostofa Ali Patwary
,
Nadathur Rajagopalan Satish
,
Narayanan Sundaram
,
Jialin Liu
,
Peter J. Sadowski
,
Evan Racah
,
Surendra Byna
,
Craig Tull
,
Wahid Bhimji
,
Prabhat
,
Pradeep Dubey
PANDA: Extreme Scale Parallel K-Nearest Neighbor on Distributed Architectures.
CoRR
(2016)
Md. Mostofa Ali Patwary
,
Nadathur Rajagopalan Satish
,
Narayanan Sundaram
,
Jialin Liu
,
Peter J. Sadowski
,
Evan Racah
,
Surendra Byna
,
Craig Tull
,
Wahid Bhimji
,
Prabhat
,
Pradeep Dubey
PANDA: Extreme Scale Parallel K-Nearest Neighbor on Distributed Architectures.
IPDPS
(2016)
Evan Racah
,
Christopher Beckham
,
Tegan Maharaj
,
Prabhat
,
Christopher J. Pal
Semi-Supervised Detection of Extreme Weather Events in Large Climate Datasets.
CoRR
(2016)
Alex Gittens
,
Aditya Devarakonda
,
Evan Racah
,
Michael F. Ringenburg
,
Lisa Gerhardt
,
Jey Kottalam
,
Jialin Liu
,
Kristyn J. Maschhoff
,
Shane Canon
,
Jatin Chhugani
,
Pramod Sharma
,
Jiyan Yang
,
James Demmel
,
Jim Harrell
,
Venkat Krishnamurthy
,
Michael W. Mahoney
,
Prabhat
Matrix Factorization at Scale: a Comparison of Scientific Data Analytics in Spark and C+MPI Using Three Case Studies.
CoRR
(2016)
Evan Racah
,
Seyoon Ko
,
Peter J. Sadowski
,
Wahid Bhimji
,
Craig Tull
,
Sang-Yun Oh
,
Pierre Baldi
,
Prabhat
Revealing Fundamental Physics from the Daya Bay Neutrino Experiment Using Deep Neural Networks.
ICMLA
(2016)
Evan Racah
,
Seyoon Ko
,
Peter J. Sadowski
,
Wahid Bhimji
,
Craig Tull
,
Sang-Yun Oh
,
Pierre Baldi
,
Prabhat
Revealing Fundamental Physics from the Daya Bay Neutrino Experiment using Deep Neural Networks.
CoRR
(2016)