Login / Signup
TAILOR
2021
2021
2021
Keyphrases
Publications
volume 12641, 2021
Trustworthy AI - Integrating Learning, Optimization and Reasoning - First International Workshop, TAILOR 2020, Virtual Event, September 4-5, 2020, Revised Selected Papers
TAILOR
12641 (2021)
2020
Michele Lombardi
,
Federico Baldo
,
Andrea Borghesi
,
Michela Milano
An Analysis of Regularized Approaches for Constrained Machine Learning.
TAILOR
(2020)
Alberto Franzin
,
Thomas Stützle
A Causal Framework for Understanding Optimisation Algorithms.
TAILOR
(2020)
Pádraig Cunningham
,
Sarah Jane Delany
Underestimation Bias and Underfitting in Machine Learning.
TAILOR
(2020)
Roland H. C. Yap
Towards Certifying Trustworthy Machine Learning Systems.
TAILOR
(2020)
Barteld Braaksma
,
Piet Daas
,
Stephan Raaijmakers
,
Amber Geurts
,
André Meyer-Vitali
AI-Supported Innovation Monitoring.
TAILOR
(2020)
Fredrik Präntare
,
Mattias Tiger
,
David Bergström
,
Herman Appelgren
,
Fredrik Heintz
Towards Utilitarian Combinatorial Assignment with Deep Neural Networks and Heuristic Algorithms.
TAILOR
(2020)
Farzad Nozarian
,
Christian Müller
,
Philipp Slusallek
Uncertainty Quantification and Calibration of Imitation Learning Policy in Autonomous Driving.
TAILOR
(2020)
Youngmin Kim
,
Richard Allmendinger
,
Manuel López-Ibáñez
Safe Learning and Optimization Techniques: Towards a Survey of the State of the Art.
TAILOR
(2020)
Najlaa Maaroof
,
Antonio Moreno
,
Aïda Valls
,
Mohammed Jabreel
Guided-LORE: Improving LORE with a Focused Search of Neighbours.
TAILOR
(2020)
Youri Coppens
,
Denis Steckelmacher
,
Catholijn M. Jonker
,
Ann Nowé
Synthesising Reinforcement Learning Policies Through Set-Valued Inductive Rule Learning.
TAILOR
(2020)
Mohammadreza Amirian
,
Lukas Tuggener
,
Ricardo Chavarriaga
,
Yvan Putra Satyawan
,
Frank-Peter Schilling
,
Friedhelm Schwenker
,
Thilo Stadelmann
Two to Trust: AutoML for Safe Modelling and Interpretable Deep Learning for Robustness.
TAILOR
(2020)
Stefan Pócos
,
Iveta Becková
,
Tomás Kuzma
,
Igor Farkas
Assessment of Manifold Unfolding in Trained Deep Neural Network Classifiers.
TAILOR
(2020)
Albert Huizing
,
Cor J. Veenman
,
Mark A. Neerincx
,
Judith Dijk
Hybrid AI: The Way Forward in AI by Developing Four Dimensions.
TAILOR
(2020)
Yago Fontenla-Seco
,
Manuel Lama
,
Alberto Bugarín
Process-To-Text: A Framework for the Quantitative Description of Processes in Natural Language.
TAILOR
(2020)
José Maria Alonso
,
Senén Barro
,
Alberto Bugarín
,
Kees van Deemter
,
Claire Gardent
,
Albert Gatt
,
Ehud Reiter
,
Carles Sierra
,
Mariët Theune
,
Nava Tintarev
,
Hitoshi Yano
,
Katarzyna Budzynska
Interactive Natural Language Technology for Explainable Artificial Intelligence.
TAILOR
(2020)
Matteo Castiglioni
,
Diodato Ferraioli
,
Nicola Gatti
,
Giulia Landriani
Election Manipulation on Social Networks with Messages on Multiple Candidates Extended Abstract.
TAILOR
(2020)
Nieves Montes
,
Carles Sierra
Value-Alignment Equilibrium in Multiagent Systems.
TAILOR
(2020)
Dimitris Kollias
,
Y. Vlaxos
,
M. Seferis
,
Ilianna Kollia
,
Levon Sukissian
,
James Wingate
,
Stefanos D. Kollias
Transparent Adaptation in Deep Medical Image Diagnosis.
TAILOR
(2020)
Jesper E. van Engelen
,
Holger H. Hoos
Semi-supervised Co-ensembling for AutoML.
TAILOR
(2020)
Miguel Rebollo
,
C. Carrascosa
,
Alberto Palomares
Consensus for Collaborative Creation of Risk Maps for COVID-19.
TAILOR
(2020)
Tomer Libal
Towards Automated GDPR Compliance Checking.
TAILOR
(2020)
Christel Baier
,
Maria Christakis
,
Timo P. Gros
,
David Groß
,
Stefan Gumhold
,
Holger Hermanns
,
Jörg Hoffmann
,
Michaela Klauck
Lab Conditions for Research on Explainable Automated Decisions.
TAILOR
(2020)
Tom Bewley
,
Jonathan Lawry
,
Arthur Richards
Modelling Agent Policies with Interpretable Imitation Learning.
TAILOR
(2020)