Login / Signup
Han Bao
ORCID
Publication Activity (10 Years)
Years Active: 2017-2024
Publications (10 Years): 47
Top Topics
Unlabeled Data
Multiple Instance
Binary Classification
Pairwise
Top Venues
CoRR
AISTATS
ICML
COLT
</>
Publications
</>
Satoki Ishikawa
,
Makoto Yamada
,
Han Bao
,
Yuki Takezawa
PhiNets: Brain-inspired Non-contrastive Learning Based on Temporal Prediction Hypothesis.
CoRR
(2024)
Shinsaku Sakaue
,
Han Bao
,
Taira Tsuchiya
,
Taihei Oki
Online Structured Prediction with Fenchel-Young Losses and Improved Surrogate Regret for Online Multiclass Classification with Logistic Loss.
CoRR
(2024)
Shinsaku Sakaue
,
Han Bao
,
Taira Tsuchiya
,
Taihei Oki
Online Structured Prediction with Fenchel-Young Losses and Improved Surrogate Regret for Online Multiclass Classification with Logistic Loss.
COLT
(2024)
Yuki Takezawa
,
Han Bao
,
Ryoma Sato
,
Kenta Niwa
,
Makoto Yamada
Polyak Meets Parameter-free Clipped Gradient Descent.
CoRR
(2024)
Guillaume Houry
,
Han Bao
,
Han Zhao
,
Makoto Yamada
Fast 1-Wasserstein distance approximations using greedy strategies.
AISTATS
(2024)
Han Bao
,
Ryuichiro Hataya
,
Ryo Karakida
Self-attention Networks Localize When QK-eigenspectrum Concentrates.
CoRR
(2024)
Guoxi Zhang
,
Han Bao
,
Hisashi Kashima
Online Policy Learning from Offline Preferences.
CoRR
(2024)
Ryoma Sato
,
Yuki Takezawa
,
Han Bao
,
Kenta Niwa
,
Makoto Yamada
Embarrassingly Simple Text Watermarks.
CoRR
(2023)
Yuki Takezawa
,
Ryoma Sato
,
Han Bao
,
Kenta Niwa
,
Makoto Yamada
Necessary and Sufficient Watermark for Large Language Models.
CoRR
(2023)
Yuki Takezawa
,
Ryoma Sato
,
Han Bao
,
Kenta Niwa
,
Makoto Yamada
Beyond Exponential Graph: Communication-Efficient Topologies for Decentralized Learning via Finite-time Convergence.
NeurIPS
(2023)
Yuki Takezawa
,
Han Bao
,
Kenta Niwa
,
Ryoma Sato
,
Makoto Yamada
Momentum Tracking: Momentum Acceleration for Decentralized Deep Learning on Heterogeneous Data.
Trans. Mach. Learn. Res.
2023 (2023)
Xiaofeng Lin
,
Guoxi Zhang
,
Xiaotian Lu
,
Han Bao
,
Koh Takeuchi
,
Hisashi Kashima
Estimating Treatment Effects Under Heterogeneous Interference.
CoRR
(2023)
Yuki Takezawa
,
Ryoma Sato
,
Han Bao
,
Kenta Niwa
,
Makoto Yamada
Beyond Exponential Graph: Communication-Efficient Topologies for Decentralized Learning via Finite-time Convergence.
CoRR
(2023)
Xiaofeng Lin
,
Guoxi Zhang
,
Xiaotian Lu
,
Han Bao
,
Koh Takeuchi
,
Hisashi Kashima
Estimating Treatment Effects Under Heterogeneous Interference.
ECML/PKDD (1)
(2023)
Han Bao
Feature Normalization Prevents Collapse of Non-contrastive Learning Dynamics.
CoRR
(2023)
Han Bao
Proper Losses, Moduli of Convexity, and Surrogate Regret Bounds.
COLT
(2023)
Ryuichiro Hataya
,
Han Bao
,
Hiromi Arai
Will Large-scale Generative Models Corrupt Future Datasets?
ICCV
(2023)
Yuki Arase
,
Han Bao
,
Sho Yokoi
Unbalanced Optimal Transport for Unbalanced Word Alignment.
ACL (1)
(2023)
Makoto Yamada
,
Yuki Takezawa
,
Ryoma Sato
,
Han Bao
,
Zornitsa Kozareva
,
Sujith Ravi
Approximating 1-Wasserstein Distance with Trees.
CoRR
(2022)
Shintaro Nakamura
,
Han Bao
,
Masashi Sugiyama
Robust computation of optimal transport by β-potential regularization.
CoRR
(2022)
Shintaro Nakamura
,
Han Bao
,
Masashi Sugiyama
Robust computation of optimal transport by β-potential regularization.
ACML
(2022)
Yuki Takezawa
,
Han Bao
,
Kenta Niwa
,
Ryoma Sato
,
Makoto Yamada
Momentum Tracking: Momentum Acceleration for Decentralized Deep Learning on Heterogeneous Data.
CoRR
(2022)
Han Bao
,
Takuya Shimada
,
Liyuan Xu
,
Issei Sato
,
Masashi Sugiyama
Pairwise Supervision Can Provably Elicit a Decision Boundary.
AISTATS
(2022)
Han Bao
,
Shinsaku Sakaue
Sparse Regularized Optimal Transport with Deformed q-Entropy.
Entropy
24 (11) (2022)
Han Bao
,
Yoshihiro Nagano
,
Kento Nozawa
On the Surrogate Gap between Contrastive and Supervised Losses.
ICML
(2022)
Ryuichiro Hataya
,
Han Bao
,
Hiromi Arai
Will Large-scale Generative Models Corrupt Future Datasets?
CoRR
(2022)
Makoto Yamada
,
Yuki Takezawa
,
Ryoma Sato
,
Han Bao
,
Zornitsa Kozareva
,
Sujith Ravi
Approximating 1-Wasserstein Distance with Trees.
Trans. Mach. Learn. Res.
2022 (2022)
Han Bao
,
Yoshihiro Nagano
,
Kento Nozawa
Sharp Learning Bounds for Contrastive Unsupervised Representation Learning.
CoRR
(2021)
Soham Dan
,
Han Bao
,
Masashi Sugiyama
Learning from Noisy Similar and Dissimilar Data.
ECML/PKDD (2)
(2021)
Han Bao
,
Masashi Sugiyama
Fenchel-Young Losses with Skewed Entropies for Class-posterior Probability Estimation.
AISTATS
(2021)
Takuya Shimada
,
Han Bao
,
Issei Sato
,
Masashi Sugiyama
Classification From Pairwise Similarities/Dissimilarities and Unlabeled Data via Empirical Risk Minimization.
Neural Comput.
33 (5) (2021)
Marcus Nordström
,
Han Bao
,
Fredrik Löfman
,
Henrik Hult
,
Atsuto Maki
,
Masashi Sugiyama
Calibrated Surrogate Maximization of Dice.
MICCAI (4)
(2020)
Han Bao
,
Clayton Scott
,
Masashi Sugiyama
Calibrated Surrogate Losses for Adversarially Robust Classification.
CoRR
(2020)
Han Bao
,
Clayton Scott
,
Masashi Sugiyama
Calibrated Surrogate Losses for Adversarially Robust Classification.
COLT
(2020)
Soham Dan
,
Han Bao
,
Masashi Sugiyama
Learning from Noisy Similar and Dissimilar Data.
CoRR
(2020)
Han Bao
,
Masashi Sugiyama
Calibrated Surrogate Maximization of Linear-fractional Utility in Binary Classification.
AISTATS
(2020)
Han Bao
,
Takuya Shimada
,
Liyuan Xu
,
Issei Sato
,
Masashi Sugiyama
Similarity-based Classification: Connecting Similarity Learning to Binary Classification.
CoRR
(2020)
Seiichi Kuroki
,
Nontawat Charoenphakdee
,
Han Bao
,
Junya Honda
,
Issei Sato
,
Masashi Sugiyama
Unsupervised Domain Adaptation Based on Source-Guided Discrepancy.
AAAI
(2019)
Takuya Shimada
,
Han Bao
,
Issei Sato
,
Masashi Sugiyama
Classification from Pairwise Similarities/Dissimilarities and Unlabeled Data via Empirical Risk Minimization.
CoRR
(2019)
Yueh-Hua Wu
,
Nontawat Charoenphakdee
,
Han Bao
,
Voot Tangkaratt
,
Masashi Sugiyama
Imitation Learning from Imperfect Demonstration.
CoRR
(2019)
Han Bao
,
Masashi Sugiyama
Calibrated Surrogate Maximization of Linear-fractional Utility in Binary Classification.
CoRR
(2019)
Yueh-Hua Wu
,
Nontawat Charoenphakdee
,
Han Bao
,
Voot Tangkaratt
,
Masashi Sugiyama
Imitation Learning from Imperfect Demonstration.
ICML
(2019)
Han Bao
,
Gang Niu
,
Masashi Sugiyama
Classification from Pairwise Similarity and Unlabeled Data.
CoRR
(2018)
Han Bao
,
Tomoya Sakai
,
Issei Sato
,
Masashi Sugiyama
Convex formulation of multiple instance learning from positive and unlabeled bags.
Neural Networks
105 (2018)
Seiichi Kuroki
,
Nontawat Charoenphakdee
,
Han Bao
,
Junya Honda
,
Issei Sato
,
Masashi Sugiyama
Unsupervised Domain Adaptation Based on Source-guided Discrepancy.
CoRR
(2018)
Han Bao
,
Gang Niu
,
Masashi Sugiyama
Classification from Pairwise Similarity and Unlabeled Data.
ICML
(2018)
Han Bao
,
Tomoya Sakai
,
Issei Sato
,
Masashi Sugiyama
Risk Minimization Framework for Multiple Instance Learning from Positive and Unlabeled Bags.
CoRR
(2017)