Login / Signup
AISTATS
1995
2005
2010
2024
1995
2024
Keyphrases
Publications
2024
Neharika Jali
,
Guannan Qu
,
Weina Wang
,
Gauri Joshi
Efficient Reinforcement Learning for Routing Jobs in Heterogeneous Queueing Systems.
AISTATS
(2024)
Jhanvi Garg
,
Xianyang Zhang
,
Quan Zhou
Soft-constrained Schrödinger Bridge: a Stochastic Control Approach.
AISTATS
(2024)
Shima Alizadeh
,
Aniruddha Bhargava
,
Karthick Gopalswamy
,
Lalit Jain
,
Branislav Kveton
,
Ge Liu
Pessimistic Off-Policy Multi-Objective Optimization.
AISTATS
(2024)
Maheed H. Ahmed
,
Mahsa Ghasemi
Privacy-Preserving Decentralized Actor-Critic for Cooperative Multi-Agent Reinforcement Learning.
AISTATS
(2024)
Nicolas Huynh
,
Jeroen Berrevoets
,
Nabeel Seedat
,
Jonathan Crabbé
,
Zhaozhi Qian
,
Mihaela van der Schaar
DAGnosis: Localized Identification of Data Inconsistencies using Structures.
AISTATS
(2024)
Samson J. Koelle
,
Hanyu Zhang
,
Octavian-Vlad Murad
,
Marina Meila
Consistency of Dictionary-Based Manifold Learning.
AISTATS
(2024)
Zhao Song
,
Junze Yin
,
Lichen Zhang
,
Ruizhe Zhang
Fast Dynamic Sampling for Determinantal Point Processes.
AISTATS
(2024)
Viktor Bengs
,
Björn Haddenhorst
,
Eyke Hüllermeier
Identifying Copeland Winners in Dueling Bandits with Indifferences.
AISTATS
(2024)
Chung-En Tsai
,
Hao-Chung Cheng
,
Yen-Huan Li
Fast Minimization of Expected Logarithmic Loss via Stochastic Dual Averaging.
AISTATS
(2024)
Chendi Qian
,
Didier Chételat
,
Christopher Morris
Exploring the Power of Graph Neural Networks in Solving Linear Optimization Problems.
AISTATS
(2024)
Michael Rizvi-Martel
,
Maude Lizaire
,
Clara Lacroce
,
Guillaume Rabusseau
Simulating weighted automata over sequences and trees with transformers.
AISTATS
(2024)
Soo Min Kwon
,
Zekai Zhang
,
Dogyoon Song
,
Laura Balzano
,
Qing Qu
Efficient Low-Dimensional Compression of Overparameterized Models.
AISTATS
(2024)
Chris Cundy
,
Rishi Desai
,
Stefano Ermon
Privacy-Constrained Policies via Mutual Information Regularized Policy Gradients.
AISTATS
(2024)
Ethan B. Andrew
,
David Westhead
,
Luisa Cutillo
GmGM: a fast multi-axis Gaussian graphical model.
AISTATS
(2024)
Ayman Chaouki
,
Jesse Read
,
Albert Bifet
Online Learning of Decision Trees with Thompson Sampling.
AISTATS
(2024)
Zitong Ma
,
Wenbo Zhao
,
Zhe Yang
Directed Hypergraph Representation Learning for Link Prediction.
AISTATS
(2024)
Daniel Dold
,
David Rügamer
,
Beate Sick
,
Oliver Dürr
Bayesian Semi-structured Subspace Inference.
AISTATS
(2024)
Yingcong Li
,
Yixiao Huang
,
Muhammed Emrullah Ildiz
,
Ankit Singh Rawat
,
Samet Oymak
Mechanics of Next Token Prediction with Self-Attention.
AISTATS
(2024)
Jimmy Hickey
,
Ricardo Henao
,
Daniel Wojdyla
,
Michael J. Pencina
,
Matthew Engelhard
Adaptive Discretization for Event PredicTion (ADEPT).
AISTATS
(2024)
Yuya Yoshikawa
,
Tomoharu Iwata
Explanation-based Training with Differentiable Insertion/Deletion Metric-aware Regularizers.
AISTATS
(2024)
Siqi Zhang
,
Yifan Hu
,
Liang Zhang
,
Niao He
Generalization Bounds of Nonconvex-(Strongly)-Concave Stochastic Minimax Optimization.
AISTATS
(2024)
Cai Zhou
,
Rose Yu
,
Yusu Wang
On the Theoretical Expressive Power and the Design Space of Higher-Order Graph Transformers.
AISTATS
(2024)
Dongxia Wu
,
Tsuyoshi Idé
,
Georgios Kollias
,
Jirí Navrátil
,
Aurélie C. Lozano
,
Naoki Abe
,
Yi-An Ma
,
Rose Yu
Learning Granger Causality from Instance-wise Self-attentive Hawkes Processes.
AISTATS
(2024)
Bianca Marin Moreno
,
Margaux Brégère
,
Pierre Gaillard
,
Nadia Oudjane
Efficient Model-Based Concave Utility Reinforcement Learning through Greedy Mirror Descent.
AISTATS
(2024)
Tom Sander
,
Maxime Sylvestre
,
Alain Durmus
Implicit Bias in Noisy-SGD: With Applications to Differentially Private Training.
AISTATS
(2024)
Jiaqi Zhang
,
Kirankumar Shiragur
,
Caroline Uhler
Membership Testing in Markov Equivalence Classes via Independence Queries.
AISTATS
(2024)
Nikita Puchkin
,
Eduard Gorbunov
,
Nikolay Kutuzov
,
Alexander V. Gasnikov
Breaking the Heavy-Tailed Noise Barrier in Stochastic Optimization Problems.
AISTATS
(2024)
Francesco Bacchiocchi
,
Gianmarco Genalti
,
Davide Maran
,
Marco Mussi
,
Marcello Restelli
,
Nicola Gatti
,
Alberto Maria Metelli
Autoregressive Bandits.
AISTATS
(2024)
Velibor Bojkovic
,
Srinivas Anumasa
,
Giulia De Masi
,
Bin Gu
,
Huan Xiong
Data Driven Threshold and Potential Initialization for Spiking Neural Networks.
AISTATS
(2024)
Lucas Cosier
,
Rares Iordan
,
Sicelukwanda N. T. Zwane
,
Giovanni Franzese
,
James T. Wilson
,
Marc Peter Deisenroth
,
Alexander Terenin
,
Yasemin Bekiroglu
A Unifying Variational Framework for Gaussian Process Motion Planning.
AISTATS
(2024)
Kevin Li
,
Max Balakirsky
,
Simon Mak
Trigonometric Quadrature Fourier Features for Scalable Gaussian Process Regression.
AISTATS
(2024)
Vincent Plassier
,
Nikita Kotelevskii
,
Aleksandr Rubashevskii
,
Fedor Noskov
,
Maksim Velikanov
,
Alexander Fishkov
,
Samuel Horváth
,
Martin Takác
,
Eric Moulines
,
Maxim Panov
Efficient Conformal Prediction under Data Heterogeneity.
AISTATS
(2024)
Yun-Peng Li
,
Hans-Andrea Loeliger
Backward Filtering Forward Deciding in Linear Non-Gaussian State Space Models.
AISTATS
(2024)
Rohan Deb
,
Aadirupa Saha
,
Arindam Banerjee
Think Before You Duel: Understanding Complexities of Preference Learning under Constrained Resources.
AISTATS
(2024)
Junze Deng
,
Yuan Cheng
,
Shaofeng Zou
,
Yingbin Liang
Sample Complexity Characterization for Linear Contextual MDPs.
AISTATS
(2024)
Rustem Islamov
,
Mher Safaryan
,
Dan Alistarh
AsGrad: A Sharp Unified Analysis of Asynchronous-SGD Algorithms.
AISTATS
(2024)
Naitong Chen
,
Trevor Campbell
Coreset Markov chain Monte Carlo.
AISTATS
(2024)
Boris Flach
,
Dmitrij Schlesinger
,
Alexander Shekhovtsov
Symmetric Equilibrium Learning of VAEs.
AISTATS
(2024)
Yu Inatsu
,
Shion Takeno
,
Hiroyuki Hanada
,
Kazuki Iwata
,
Ichiro Takeuchi
Bounding Box-based Multi-objective Bayesian Optimization of Risk Measures under Input Uncertainty.
AISTATS
(2024)
Pavan Karjol
,
Rohan Kashyap
,
Aditya Gopalan
,
A. P. Prathosh
A Unified Framework for Discovering Discrete Symmetries.
AISTATS
(2024)
Hao Liang
,
Zhiquan Luo
Regret Bounds for Risk-sensitive Reinforcement Learning with Lipschitz Dynamic Risk Measures.
AISTATS
(2024)
Yinuo Ren
,
Chao Ma
,
Lexing Ying
Understanding the Generalization Benefits of Late Learning Rate Decay.
AISTATS
(2024)
Lesi Chen
,
Haishan Ye
,
Luo Luo
An Efficient Stochastic Algorithm for Decentralized Nonconvex-Strongly-Concave Minimax Optimization.
AISTATS
(2024)
Ryan Thompson
,
Edwin V. Bonilla
,
Robert Kohn
Contextual Directed Acyclic Graphs.
AISTATS
(2024)
Patrick Kolpaczki
,
Maximilian Muschalik
,
Fabian Fumagalli
,
Barbara Hammer
,
Eyke Hüllermeier
SVARM-IQ: Efficient Approximation of Any-order Shapley Interactions through Stratification.
AISTATS
(2024)
Yu Yang
,
Eric Gan
,
Gintare Karolina Dziugaite
,
Baharan Mirzasoleiman
Identifying Spurious Biases Early in Training through the Lens of Simplicity Bias.
AISTATS
(2024)
Tolga Dimlioglu
,
Anna Choromanska
GRAWA: Gradient-based Weighted Averaging for Distributed Training of Deep Learning Models.
AISTATS
(2024)
Alexandra Maria Hotti
,
Lennart Alexander Van der Goten
,
Jens Lagergren
Benefits of Non-Linear Scale Parameterizations in Black Box Variational Inference through Smoothness Results and Gradient Variance Bounds.
AISTATS
(2024)
Mohan Wu
,
Martin Lysy
Data-Adaptive Probabilistic Likelihood Approximation for Ordinary Differential Equations.
AISTATS
(2024)
volume 238, 2024
International Conference on Artificial Intelligence and Statistics, 2-4 May 2024, Palau de Congressos, Valencia, Spain.
AISTATS
238 (2024)