​
Login / Signup
Yu Inatsu
ORCID
Publication Activity (10 Years)
Years Active: 2019-2024
Publications (10 Years): 29
Top Topics
Gaussian Process
Robust Optimization
Regret Bounds
Active Learning
Top Venues
CoRR
Neural Comput.
AISTATS
ICML
</>
Publications
</>
Yu Inatsu
,
Shion Takeno
,
Hiroyuki Hanada
,
Kazuki Iwata
,
Ichiro Takeuchi
Bounding Box-based Multi-objective Bayesian Optimization of Risk Measures under Input Uncertainty.
AISTATS
(2024)
Shogo Iwazaki
,
Tomohiko Tanabe
,
Mitsuru Irie
,
Shion Takeno
,
Yu Inatsu
Risk Seeking Bayesian Optimization under Uncertainty for Obtaining Extremum.
AISTATS
(2024)
Hiroyuki Hanada
,
Satoshi Akahane
,
Tatsuya Aoyama
,
Tomonari Tanaka
,
Yoshito Okura
,
Yu Inatsu
,
Noriaki Hashimoto
,
Taro Murayama
,
Lee Hanju
,
Shinya Kojima
,
Ichiro Takeuchi
Distributionally Robust Safe Screening.
CoRR
(2024)
Hiroyuki Hanada
,
Tatsuya Aoyama
,
Satoshi Akahane
,
Tomonari Tanaka
,
Yoshito Okura
,
Yu Inatsu
,
Noriaki Hashimoto
,
Shion Takeno
,
Taro Murayama
,
Lee Hanju
,
Shinya Kojima
,
Ichiro Takeuchi
Distributionally Robust Safe Sample Screening.
CoRR
(2024)
Shion Takeno
,
Yu Inatsu
,
Masayuki Karasuyama
Randomized Gaussian Process Upper Confidence Bound with Tighter Bayesian Regret Bounds.
ICML
(2023)
Shion Takeno
,
Yu Inatsu
,
Masayuki Karasuyama
,
Ichiro Takeuchi
Posterior Sampling-Based Bayesian Optimization with Tighter Bayesian Regret Bounds.
CoRR
(2023)
Shion Takeno
,
Yu Inatsu
,
Masayuki Karasuyama
Randomized Gaussian Process Upper Confidence Bound with Tight Bayesian Regret Bounds.
CoRR
(2023)
Yu Inatsu
,
Ichiro Takeuchi
Distributionally Robust Multi-objective Bayesian Optimization under Uncertain Environments.
CoRR
(2023)
Yu Inatsu
,
Shion Takeno
,
Masayuki Karasuyama
,
Ichiro Takeuchi
Bayesian Optimization for Distributionally Robust Chance-constrained Problem.
CoRR
(2022)
Yu Inatsu
,
Shion Takeno
,
Masayuki Karasuyama
,
Ichiro Takeuchi
Bayesian Optimization for Distributionally Robust Chance-constrained Problem.
ICML
(2022)
Shunya Kusakawa
,
Shion Takeno
,
Yu Inatsu
,
Kentaro Kutsukake
,
Shogo Iwazaki
,
Takashi Nakano
,
Toru Ujihara
,
Masayuki Karasuyama
,
Ichiro Takeuchi
Bayesian Optimization for Cascade-Type Multistage Processes.
Neural Comput.
34 (12) (2022)
Shogo Iwazaki
,
Yu Inatsu
,
Ichiro Takeuchi
Bayesian Quadrature Optimization for Probability Threshold Robustness Measure.
Neural Comput.
33 (12) (2021)
Toshiaki Tsukurimichi
,
Yu Inatsu
,
Vo Nguyen Le Duy
,
Ichiro Takeuchi
Conditional Selective Inference for Robust Regression and Outlier Detection using Piecewise-Linear Homotopy Continuation.
CoRR
(2021)
Ryota Sugiyama
,
Hiroki Toda
,
Vo Nguyen Le Duy
,
Yu Inatsu
,
Ichiro Takeuchi
Valid and Exact Statistical Inference for Multi-dimensional Multiple Change-Points by Selective Inference.
CoRR
(2021)
Yu Inatsu
,
Shogo Iwazaki
,
Ichiro Takeuchi
Active learning for distributionally robust level-set estimation.
CoRR
(2021)
Yu Inatsu
,
Shogo Iwazaki
,
Ichiro Takeuchi
Active Learning for Distributionally Robust Level-Set Estimation.
ICML
(2021)
Shogo Iwazaki
,
Yu Inatsu
,
Ichiro Takeuchi
Mean-Variance Analysis in Bayesian Optimization under Uncertainty.
AISTATS
(2021)
Shunya Kusakawa
,
Shion Takeno
,
Yu Inatsu
,
Kentaro Kutsukake
,
Shogo Iwazaki
,
Takashi Nakano
,
Toru Ujihara
,
Masayuki Karasuyama
,
Ichiro Takeuchi
Bayesian Optimization for Cascade-type Multi-stage Processes.
CoRR
(2021)
Shogo Iwazaki
,
Yu Inatsu
,
Ichiro Takeuchi
Bayesian Experimental Design for Finding Reliable Level Set Under Input Uncertainty.
IEEE Access
8 (2020)
Shogo Iwazaki
,
Yu Inatsu
,
Ichiro Takeuchi
Mean-Variance Analysis in Bayesian Optimization under Uncertainty.
CoRR
(2020)
Yu Inatsu
,
Daisuke Sugita
,
Kazuaki Toyoura
,
Ichiro Takeuchi
Active Learning for Enumerating Local Minima Based on Gaussian Process Derivatives.
Neural Comput.
32 (10) (2020)
Kosuke Tanizaki
,
Noriaki Hashimoto
,
Yu Inatsu
,
Hidekata Hontani
,
Ichiro Takeuchi
Computing Valid P-Values for Image Segmentation by Selective Inference.
CVPR
(2020)
Shogo Iwazaki
,
Yu Inatsu
,
Ichiro Takeuchi
Bayesian Quadrature Optimization for Probability Threshold Robustness Measure.
CoRR
(2020)
Yu Inatsu
,
Masayuki Karasuyama
,
Keiichi Inoue
,
Ichiro Takeuchi
Active Learning for Level Set Estimation Under Input Uncertainty and Its Extensions.
Neural Comput.
32 (12) (2020)
Yu Inatsu
,
Masayuki Karasuyama
,
Keiichi Inoue
,
Hideki Kandori
,
Ichiro Takeuchi
Active Learning of Bayesian Linear Models with High-Dimensional Binary Features by Parameter Confidence-Region Estimation.
Neural Comput.
32 (10) (2020)
Shogo Iwazaki
,
Yu Inatsu
,
Ichiro Takeuchi
Bayesian Experimental Design for Finding Reliable Level Set under Input Uncertainty.
CoRR
(2019)
Kosuke Tanizaki
,
Noriaki Hashimoto
,
Yu Inatsu
,
Hidekata Hontani
,
Ichiro Takeuchi
Computing Valid p-values for Image Segmentation by Selective Inference.
CoRR
(2019)
Yu Inatsu
,
Daisuke Sugita
,
Kazuaki Toyoura
,
Ichiro Takeuchi
Active learning for enumerating local minima based on Gaussian process derivatives.
CoRR
(2019)
Yu Inatsu
,
Masayuki Karasuyama
,
Keiichi Inoue
,
Ichiro Takeuchi
Active learning for level set estimation under cost-dependent input uncertainty.
CoRR
(2019)