Login / Signup
Eric Bradford
ORCID
Publication Activity (10 Years)
Years Active: 2018-2021
Publications (10 Years): 16
Top Topics
Reinforcement Learning
Hyperparameters
Predictive Control
Chance Constrained
Top Venues
CoRR
Comput. Chem. Eng.
J. Glob. Optim.
ECC
</>
Publications
</>
Ehecatl Antonio del Rio-Chanona
,
Panagiotis Petsagkourakis
,
Eric Bradford
,
Jose Eduardo Alves Graciano
,
Benoît Chachuat
Real-time optimization meets Bayesian optimization and derivative-free optimization: A tale of modifier adaptation.
Comput. Chem. Eng.
147 (2021)
Eric Bradford
,
Lars Imsland
,
Marcus Reble
,
Ehecatl Antonio del Rio-Chanona
Hybrid Gaussian Process Modeling Applied to Economic Stochastic Model Predictive Control of Batch Processes.
CoRR
(2021)
Panagiotis Petsagkourakis
,
Ilya Orson Sandoval
,
Eric Bradford
,
Dongda Zhang
,
Ehecatl Antonio del Rio-Chanona
Constrained Reinforcement Learning for Dynamic Optimization under Uncertainty.
CoRR
(2020)
Panagiotis Petsagkourakis
,
Ilya Orson Sandoval
,
Eric Bradford
,
Federico Galvanin
,
Dongda Zhang
,
Ehecatl Antonio del Rio-Chanona
Chance Constrained Policy Optimization for Process Control and Optimization.
CoRR
(2020)
Panagiotis Petsagkourakis
,
Ilya Orson Sandoval
,
Eric Bradford
,
Dongda Zhang
,
Ehecatl Antonio del Rio-Chanona
Reinforcement learning for batch bioprocess optimization.
Comput. Chem. Eng.
133 (2020)
Eric Bradford
,
Lars Imsland
,
Dongda Zhang
,
Ehecatl Antonio del Rio-Chanona
Stochastic data-driven model predictive control using gaussian processes.
Comput. Chem. Eng.
139 (2020)
Ehecatl Antonio del Rio-Chanona
,
Panagiotis Petsagkourakis
,
Eric Bradford
,
Jose Eduardo Alves Graciano
,
Benoît Chachuat
Modifier Adaptation Meets Bayesian Optimization and Derivative-Free Optimization.
CoRR
(2020)
Eric Bradford
,
Lars Imsland
,
Ehecatl Antonio del Rio-Chanona
Nonlinear model predictive control with explicit back-offs for Gaussian process state space models.
CDC
(2019)
Eric Bradford
,
Marcus Reble
,
Lars Imsland
Output feedback stochastic nonlinear model predictive control of a polymerization batch process.
ECC
(2019)
Eric Bradford
,
Lars Imsland
,
Dongda Zhang
,
Ehecatl Antonio del Rio-Chanona
Stochastic data-driven model predictive control using Gaussian processes.
CoRR
(2019)
Panagiotis Petsagkourakis
,
Ilya Orson Sandoval
,
Eric Bradford
,
Dongda Zhang
,
Ehecatl Antonio del Rio-Chanona
Reinforcement Learning for Batch Bioprocess Optimization.
CoRR
(2019)
Eric Bradford
,
Lars Imsland
Output feedback stochastic nonlinear model predictive control for batch processes.
Comput. Chem. Eng.
126 (2019)
Eric Bradford
,
Lars Imsland
Stochastic Nonlinear Model Predictive Control Using Gaussian Processes.
ECC
(2018)
Eric Bradford
,
Artur M. Schweidtmann
,
Alexei A. Lapkin
Efficient multiobjective optimization employing Gaussian processes, spectral sampling and a genetic algorithm.
J. Glob. Optim.
71 (2) (2018)
Eric Bradford
,
Artur M. Schweidtmann
,
Alexei A. Lapkin
Correction to: Efficient multiobjective optimization employing Gaussian processes, spectral sampling and a genetic algorithm.
J. Glob. Optim.
71 (2) (2018)
Eric Bradford
,
Artur M. Schweidtmann
,
Dongda Zhang
,
Keju Jing
,
Ehecatl Antonio del Rio-Chanona
Dynamic modeling and optimization of sustainable algal production with uncertainty using multivariate Gaussian processes.
Comput. Chem. Eng.
118 (2018)