Login / Signup
Nate Gruver
Publication Activity (10 Years)
Years Active: 2018-2024
Publications (10 Years): 21
Top Topics
Language Modelling
Inductive Bias
Top Venues
CoRR
ICLR
NeurIPS
ICAPS
</>
Publications
</>
Sanyam Kapoor
,
Nate Gruver
,
Manley Roberts
,
Katherine M. Collins
,
Arka Pal
,
Umang Bhatt
,
Adrian Weller
,
Samuel Dooley
,
Micah Goldblum
,
Andrew Gordon Wilson
Large Language Models Must Be Taught to Know What They Don't Know.
CoRR
(2024)
Nate Gruver
,
Anuroop Sriram
,
Andrea Madotto
,
Andrew Gordon Wilson
,
C. Lawrence Zitnick
,
Zachary W. Ulissi
Fine-Tuned Language Models Generate Stable Inorganic Materials as Text.
ICLR
(2024)
Nate Gruver
,
Anuroop Sriram
,
Andrea Madotto
,
Andrew Gordon Wilson
,
C. Lawrence Zitnick
,
Zachary W. Ulissi
Fine-Tuned Language Models Generate Stable Inorganic Materials as Text.
CoRR
(2024)
Nate Gruver
,
Samuel Stanton
,
Nathan C. Frey
,
Tim G. J. Rudner
,
Isidro Hötzel
,
Julien Lafrance-Vanasse
,
Arvind Rajpal
,
Kyunghyun Cho
,
Andrew Gordon Wilson
Protein Design with Guided Discrete Diffusion.
NeurIPS
(2023)
Nate Gruver
,
Samuel Stanton
,
Nathan C. Frey
,
Tim G. J. Rudner
,
Isidro Hötzel
,
Julien Lafrance-Vanasse
,
Arvind Rajpal
,
Kyunghyun Cho
,
Andrew Gordon Wilson
Protein Design with Guided Discrete Diffusion.
CoRR
(2023)
Nate Gruver
,
Marc Anton Finzi
,
Micah Goldblum
,
Andrew Gordon Wilson
The Lie Derivative for Measuring Learned Equivariance.
ICLR
(2023)
Nate Gruver
,
Marc Finzi
,
Shikai Qiu
,
Andrew Gordon Wilson
Large Language Models Are Zero-Shot Time Series Forecasters.
NeurIPS
(2023)
Nate Gruver
,
Marc Finzi
,
Shikai Qiu
,
Andrew Gordon Wilson
Large Language Models Are Zero-Shot Time Series Forecasters.
CoRR
(2023)
Nate Gruver
,
Marc Anton Finzi
,
Samuel Don Stanton
,
Andrew Gordon Wilson
Deconstructing the Inductive Biases of Hamiltonian Neural Networks.
ICLR
(2022)
Pavel Izmailov
,
Polina Kirichenko
,
Nate Gruver
,
Andrew Gordon Wilson
On Feature Learning in the Presence of Spurious Correlations.
CoRR
(2022)
Samuel Stanton
,
Wesley J. Maddox
,
Nate Gruver
,
Phillip Maffettone
,
Emily Delaney
,
Peyton Greenside
,
Andrew Gordon Wilson
Accelerating Bayesian Optimization for Biological Sequence Design with Denoising Autoencoders.
ICML
(2022)
Nate Gruver
,
Marc Finzi
,
Micah Goldblum
,
Andrew Gordon Wilson
The Lie Derivative for Measuring Learned Equivariance.
CoRR
(2022)
Nate Gruver
,
Marc Finzi
,
Samuel Stanton
,
Andrew Gordon Wilson
Deconstructing the Inductive Biases of Hamiltonian Neural Networks.
CoRR
(2022)
Pavel Izmailov
,
Polina Kirichenko
,
Nate Gruver
,
Andrew Gordon Wilson
On Feature Learning in the Presence of Spurious Correlations.
NeurIPS
(2022)
Samuel Stanton
,
Wesley J. Maddox
,
Nate Gruver
,
Phillip Maffettone
,
Emily Delaney
,
Peyton Greenside
,
Andrew Gordon Wilson
Accelerating Bayesian Optimization for Biological Sequence Design with Denoising Autoencoders.
CoRR
(2022)
Shushman Choudhury
,
Nate Gruver
,
Mykel J. Kochenderfer
Adaptive Informative Path Planning with Multimodal Sensing.
CoRR
(2020)
Shushman Choudhury
,
Nate Gruver
,
Mykel J. Kochenderfer
Adaptive Informative Path Planning with Multimodal Sensing.
ICAPS
(2020)
Nate Gruver
,
Jiaming Song
,
Mykel J. Kochenderfer
,
Stefano Ermon
Multi-agent Adversarial Inverse Reinforcement Learning with Latent Variables.
AAMAS
(2020)
Nate Gruver
,
Ali Malik
,
Brahm Capoor
,
Chris Piech
,
Mitchell L. Stevens
,
Andreas Paepcke
Using Latent Variable Models to Observe Academic Pathways.
EDM
(2019)
Nate Gruver
,
Ali Malik
,
Brahm Capoor
,
Chris Piech
,
Mitchell L. Stevens
,
Andreas Paepcke
Using Latent Variable Models to Observe Academic Pathways.
CoRR
(2019)
Thomas Dean
,
Maurice Chiang
,
Marcus Gomez
,
Nate Gruver
,
Yousef Hindy
,
Michelle Lam
,
Peter Lu
,
Sophia Sanchez
,
Rohun Saxena
,
Michael Smith
,
Lucy Wang
,
Catherine Wong
Amanuensis: The Programmer's Apprentice.
CoRR
(2018)