​
Login / Signup
Michael Friedrich
ORCID
Publication Activity (10 Years)
Years Active: 2019-2024
Publications (10 Years): 8
Top Topics
Semiconductor Manufacturing
Convolutional Neural Networks
Deep Learning
Biologically Plausible
Top Venues
CoRR
IECON
J. Intell. Manuf.
ETFA
</>
Publications
</>
Zhining Hu
,
Tobias Schlosser
,
Michael Friedrich
,
André Luiz Buarque Vieira e Silva
,
Frederik Beuth
,
Danny Kowerko
Utilizing Generative Adversarial Networks for Image Data Augmentation and Classification of Semiconductor Wafer Dicing Induced Defects.
CoRR
(2024)
Tobias Schlosser
,
Michael Friedrich
,
Frederik Beuth
,
Danny Kowerko
Improving automated visual fault inspection for semiconductor manufacturing using a hybrid multistage system of deep neural networks.
J. Intell. Manuf.
33 (4) (2022)
Frederik Beuth
,
Tobias Schlosser
,
Michael Friedrich
,
Danny Kowerko
Improving Automated Visual Fault Detection by Combining a Biologically Plausible Model of Visual Attention with Deep Learning.
CoRR
(2021)
Frederik Beuth
,
Tobias Schlosser
,
Michael Friedrich
,
Danny Kowerko
Improving Automated Visual Fault Detection by Combining a Biologically Plausible Model of Visual Attention with Deep Learning.
IECON
(2020)
Tobias Schlosser
,
Frederik Beuth
,
Michael Friedrich
,
Danny Kowerko
A Novel Visual Fault Detection and Classification System for Semiconductor Manufacturing Using Stacked Hybrid Convolutional Neural Networks.
CoRR
(2019)
Tobias Schlosser
,
Michael Friedrich
,
Danny Kowerko
Hexagonal Image Processing in the Context of Machine Learning: Conception of a Biologically Inspired Hexagonal Deep Learning Framework.
ICMLA
(2019)
Tobias Schlosser
,
Frederik Beuth
,
Michael Friedrich
,
Danny Kowerko
A Novel Visual Fault Detection and Classification System for Semiconductor Manufacturing Using Stacked Hybrid Convolutional Neural Networks.
ETFA
(2019)
Tobias Schlosser
,
Michael Friedrich
,
Danny Kowerko
Hexagonal Image Processing in the Context of Machine Learning: Conception of a Biologically Inspired Hexagonal Deep Learning Framework.
CoRR
(2019)