Login / Signup
AutoML
2023
2023
2023
Keyphrases
Publications
2023
Lichuan Xiang
,
Rosco Hunter
,
Minghao Xu
,
Lukasz Dudziak
,
Hongkai Wen
Exploiting Network Compressibility and Topology in Zero-Cost NAS.
AutoML
(2023)
Mohammad Loni
,
Aditya Mohan
,
Mehdi Asadi
,
Marius Lindauer
Learning Activation Functions for Sparse Neural Networks.
AutoML
(2023)
Aditya Mohan
,
Carolin Benjamins
,
Konrad Wienecke
,
Alexander Dockhorn
,
Marius Lindauer
AutoRL Hyperparameter Landscapes.
AutoML
(2023)
Lennart Oswald Purucker
,
Joeran Beel
CMA-ES for Post Hoc Ensembling in AutoML: A Great Success and Salvageable Failure.
AutoML
(2023)
Michael Feffer
,
Martin Hirzel
,
Samuel C. Hoffman
,
Kiran Kate
,
Parikshit Ram
,
Avraham Shinnar
Searching for Fairer Machine Learning Ensembles.
AutoML
(2023)
Roque Lopez
,
Raoni Lourenço
,
Rémi Rampin
,
Sonia Castelo
,
Aécio S. R. Santos
,
Jorge Henrique Piazentin Ono
,
Cláudio T. Silva
,
Juliana Freire
AlphaD3M: An Open-Source AutoML Library for Multiple ML Tasks.
AutoML
(2023)
José Manuel Navarro
,
Alexis Huet
,
Dario Rossi
Meta-Learning for Fast Model Recommendation in Unsupervised Multivariate Time Series Anomaly Detection.
AutoML
(2023)
Iordanis Fostiropoulos
,
Laurent Itti
ABLATOR: Robust Horizontal-Scaling of Machine Learning Ablation Experiments.
AutoML
(2023)
Ana Kostovska
,
Gjorgjina Cenikj
,
Diederick Vermetten
,
Anja Jankovic
,
Ana Nikolikj
,
Urban Skvorc
,
Peter Korosec
,
Carola Doerr
,
Tome Eftimov
PS-AAS: Portfolio Selection for Automated Algorithm Selection in Black-Box Optimization.
AutoML
(2023)
Wuyang Chen
,
Wei Huang
,
Zhangyang Wang
"No Free Lunch" in Neural Architectures? A Joint Analysis of Expressivity, Convergence, and Generalization.
AutoML
(2023)
Lennart Oswald Purucker
,
Lennart Schneider
,
Marie Anastacio
,
Joeran Beel
,
Bernd Bischl
,
Holger H. Hoos
Q(D)O-ES: Population-based Quality (Diversity) Optimisation for Post Hoc Ensemble Selection in AutoML.
AutoML
(2023)
Xiaoxing Wang
,
Jiaxing Li
,
Chao Xue
,
Wei Liu
,
Weifeng Liu
,
Xiaokang Yang
,
Junchi Yan
,
Dacheng Tao
Poisson Process for Bayesian Optimization.
AutoML
(2023)
Mehraveh Javan Roshtkhari
,
Matthew Toews
,
Marco Pedersoli
Balanced Mixture of Supernets for Learning the CNN Pooling Architecture.
AutoML
(2023)
Marcel Aach
,
Eray Inanc
,
Rakesh Sarma
,
Morris Riedel
,
Andreas Lintermann
Optimal Resource Allocation for Early Stopping-based Neural Architecture Search Methods.
AutoML
(2023)
Chi Wang
,
Xueqing Liu
,
Ahmed Hassan Awadallah
Cost-Effective Hyperparameter Optimization for Large Language Model Generation Inference.
AutoML
(2023)
Oleksandr Shchur
,
Ali Caner Türkmen
,
Nick Erickson
,
Huibin Shen
,
Alexander Shirkov
,
Tony Hu
,
Bernie Wang
AutoGluon-TimeSeries: AutoML for Probabilistic Time Series Forecasting.
AutoML
(2023)
Daniel Dimanov
,
Colin Singleton
,
Shahin Rostami
,
Emili Balaguer-Ballester
MEOW - Multi-Objective Evolutionary Weapon Detection.
AutoML
(2023)
Linus Ericsson
,
Da Li
,
Timothy M. Hospedales
Better Practices for Domain Adaptation.
AutoML
(2023)
Yihang Shen
,
Carl Kingsford
Computationally Efficient High-Dimensional Bayesian Optimization via Variable Selection.
AutoML
(2023)
Tommie Kerssies
,
Joaquin Vanschoren
Neural Architecture Search for Visual Anomaly Segmentation.
AutoML
(2023)
Diederick Vermetten
,
Furong Ye
,
Thomas Bäck
,
Carola Doerr
MA-BBOB: Many-Affine Combinations of BBOB Functions for Evaluating AutoML Approaches in Noiseless Numerical Black-Box Optimization Contexts.
AutoML
(2023)
Yash Akhauri
,
Mohamed S. Abdelfattah
Multi-Predict: Few Shot Predictors For Efficient Neural Architecture Search.
AutoML
(2023)
Sarah Segel
,
Helena Graf
,
Alexander Tornede
,
Bernd Bischl
,
Marius Lindauer
Symbolic Explanations for Hyperparameter Optimization.
AutoML
(2023)
Carolin Benjamins
,
Elena Raponi
,
Anja Jankovic
,
Carola Doerr
,
Marius Lindauer
Self-Adjusting Weighted Expected Improvement for Bayesian Optimization.
AutoML
(2023)
volume 228, 2023
International Conference on Automated Machine Learning, 12-15 November 2023, Hasso Plattner Institute, Potsdam, Germany.
AutoML
228 (2023)
2022
Xingchen Wan
,
Cong Lu
,
Jack Parker-Holder
,
Philip J. Ball
,
Vu Nguyen
,
Binxin Ru
,
Michael A. Osborne
Bayesian Generational Population-Based Training.
AutoML
(2022)
Xingyou Song
,
Sagi Perel
,
Chansoo Lee
,
Greg Kochanski
,
Daniel Golovin
Open Source Vizier: Distributed Infrastructure and API for Reliable and Flexible Blackbox Optimization.
AutoML
(2022)
Qi Zhao
,
Tim Köonigl
,
Christian Wressnegger
Non-Uniform Adversarially Robust Pruning.
AutoML
(2022)
Damir Pulatov
,
Marie Anastacio
,
Lars Kotthoff
,
Holger H. Hoos
Opening the Black Box: Automated Software Analysis for Algorithm Selection.
AutoML
(2022)
Yingjie Miao
,
Xingyou Song
,
John D. Co-Reyes
,
Daiyi Peng
,
Summer Yue
,
Eugene Brevdo
,
Aleksandra Faust
Differentiable Architecture Search for Reinforcement Learning.
AutoML
(2022)
Parikshit Ram
On the Optimality Gap of Warm-Started Hyperparameter Optimization.
AutoML
(2022)
Florian Pfisterer
,
Lennart Schneider
,
Julia Moosbauer
,
Martin Binder
,
Bernd Bischl
YAHPO Gym - An Efficient Multi-Objective Multi-Fidelity Benchmark for Hyperparameter Optimization.
AutoML
(2022)
David Salinas
,
Matthias W. Seeger
,
Aaron Klein
,
Valerio Perrone
,
Martin Wistuba
,
Cédric Archambeau
Syne Tune: A Library for Large Scale Hyperparameter Tuning and Reproducible Research.
AutoML
(2022)
Juan Pablo Muñoz
,
Nikolay Lyalyushkin
,
Chaunte Willetta Lacewell
,
Anastasia Senina
,
Daniel Cummings
,
Anthony Sarah
,
Alexander Kozlov
,
Nilesh Jain
Automated Super-Network Generation for Scalable Neural Architecture Search.
AutoML
(2022)
Anastasia Makarova
,
Huibin Shen
,
Valerio Perrone
,
Aaron Klein
,
Jean Baptiste Faddoul
,
Andreas Krause
,
Matthias W. Seeger
,
Cédric Archambeau
Automatic Termination for Hyperparameter Optimization.
AutoML
(2022)
Duc N. M. Hoang
,
Kaixiong Zhou
,
Tianlong Chen
,
Xia Hu
,
Zhangyang Wang
AutoCoG: A Unified Data-Model Co-Search Framework for Graph Neural Networks.
AutoML
(2022)
Trapit Bansal
,
Salaheddin Alzubi
,
Tong Wang
,
Jay-Yoon Lee
,
Andrew McCallum
Meta-Adapters: Parameter Efficient Few-shot Fine-tuning through Meta-Learning.
AutoML
(2022)
Lennart Schneider
,
Florian Pfisterer
,
Paul Kent
,
Jürgen Branke
,
Bernd Bischl
,
Janek Thomas
Tackling Neural Architecture Search With Quality Diversity Optimization.
AutoML
(2022)
Guanghui Zhu
,
Zhuoer Xu
,
Chunfeng Yuan
,
Yihua Huang
DIFER: Differentiable Automated Feature Engineering.
AutoML
(2022)
Hsin-Pai Cheng
,
Feng Liang
,
Meng Li
,
Bowen Cheng
,
Feng Yan
,
Hai Li
,
Vikas Chandra
,
Yiran Chen
ScaleNAS: Multi-Path One-Shot NAS for Scale-Aware High-Resolution Representation.
AutoML
(2022)
Mehdi Bahrami
,
Wei-Peng Chen
,
Lei Liu
,
Mukul Prasad
BERT-Sort: A Zero-shot MLM Semantic Encoder on Ordinal Features for AutoML.
AutoML
(2022)
Kevin Alexander Laube
,
Maximus Mutschler
,
Andreas Zell
What to expect of hardware metric predictors in NAS.
AutoML
(2022)
Lijun Zhang
,
Xiao Liu
,
Hui Guan
A Tree-Structured Multi-Task Model Recommender.
AutoML
(2022)
Kenan Sehic
,
Alexandre Gramfort
,
Joseph Salmon
,
Luigi Nardi
LassoBench: A High-Dimensional Hyperparameter Optimization Benchmark Suite for Lasso.
AutoML
(2022)
Kaitlin Maile
,
Emmanuel Rachelson
,
Hervé Luga
,
Dennis George Wilson
When, where, and how to add new neurons to ANNs.
AutoML
(2022)
volume 188, 2022
International Conference on Automated Machine Learning, AutoML 2022, 25-27 July 2022, Johns Hopkins University, Baltimore, MD, USA.
AutoML
188 (2022)