Login / Signup
Tom Benson
Publication Activity (10 Years)
Years Active: 2019-2022
Publications (10 Years): 9
Top Topics
Generative Model
Convolutional Neural Networks
Training Samples
Eigenvalues And Eigenvectors
Top Venues
CoRR
IPDPS
CCGRID
CLUSTER
</>
Publications
</>
Shehtab Zaman
,
Tim Moon
,
Tom Benson
,
Sam Adé Jacobs
,
Kenneth Chiu
,
Brian Van Essen
Parallelizing Graph Neural Networks via Matrix Compaction for Edge-Conditioned Networks.
CCGRID
(2022)
You Xuan Thung
,
Tom Benson
,
Nikita Klimenko
Detecting languages in streetscapes using deep convolutional neural networks.
Big Data
(2022)
Arpan Jain
,
Tim Moon
,
Tom Benson
,
Hari Subramoni
,
Sam Adé Jacobs
,
Dhabaleswar K. Panda
,
Brian Van Essen
SUPER: SUb-Graph Parallelism for TransformERs.
IPDPS
(2021)
Sam Ade Jacobs
,
Brian Van Essen
,
David Hysom
,
Jae-Seung Yeom
,
Tim Moon
,
Rushil Anirudh
,
Jayaraman J. Thiagarajan
,
Shusen Liu
,
Peer-Timo Bremer
,
Jim Gaffney
,
Tom Benson
,
Peter B. Robinson
,
J. Luc Peterson
,
Brian K. Spears
Parallelizing Training of Deep Generative Models on Massive Scientific Datasets.
CoRR
(2019)
Simone Mora
,
Amin Anjomshoaa
,
Tom Benson
,
Fábio Duarte
,
Carlo Ratti
Towards Large-scale Drive-by Sensing with Multi-purpose City Scanner Nodes.
WF-IoT
(2019)
Nikoli Dryden
,
Naoya Maruyama
,
Tom Benson
,
Tim Moon
,
Marc Snir
,
Brian Van Essen
Improving Strong-Scaling of CNN Training by Exploiting Finer-Grained Parallelism.
CoRR
(2019)
Nikoli Dryden
,
Naoya Maruyama
,
Tim Moon
,
Tom Benson
,
Marc Snir
,
Brian Van Essen
Channel and filter parallelism for large-scale CNN training.
SC
(2019)
Sam Ade Jacobs
,
Jim Gaffney
,
Tom Benson
,
Peter B. Robinson
,
J. Luc Peterson
,
Brian K. Spears
,
Brian Van Essen
,
David Hysom
,
Jae-Seung Yeom
,
Tim Moon
,
Rushil Anirudh
,
Jayaraman J. Thiagarajan
,
Shusen Liu
,
Peer-Timo Bremer
Parallelizing Training of Deep Generative Models on Massive Scientific Datasets.
CLUSTER
(2019)
Nikoli Dryden
,
Naoya Maruyama
,
Tom Benson
,
Tim Moon
,
Marc Snir
,
Brian Van Essen
Improving Strong-Scaling of CNN Training by Exploiting Finer-Grained Parallelism.
IPDPS
(2019)