Login / Signup
Tim Moon
Publication Activity (10 Years)
Years Active: 2016-2022
Publications (10 Years): 11
Top Topics
Generative Model
Maximum Entropy Principle
Deep Learning
Finer Grained
Top Venues
CoRR
IPDPS
CCGRID
CLUSTER
</>
Publications
</>
Shehtab Zaman
,
Tim Moon
,
Tom Benson
,
Sam Adé Jacobs
,
Kenneth Chiu
,
Brian Van Essen
Parallelizing Graph Neural Networks via Matrix Compaction for Edge-Conditioned Networks.
CCGRID
(2022)
Sam Ade Jacobs
,
Tim Moon
,
Kevin McLoughlin
,
Derek Jones
,
David Hysom
,
Dong H. Ahn
,
John C. Gyllenhaal
,
Pythagoras Watson
,
Felice C. Lightstone
,
Jonathan E. Allen
,
Ian Karlin
,
Brian Van Essen
Enabling rapid COVID-19 small molecule drug design through scalable deep learning of generative models.
Int. J. High Perform. Comput. Appl.
35 (5) (2021)
Zachariah Carmichael
,
Tim Moon
,
Sam Ade Jacobs
Learning Interpretable Models Through Multi-Objective Neural Architecture Search.
CoRR
(2021)
Arpan Jain
,
Tim Moon
,
Tom Benson
,
Hari Subramoni
,
Sam Adé Jacobs
,
Dhabaleswar K. Panda
,
Brian Van Essen
SUPER: SUb-Graph Parallelism for TransformERs.
IPDPS
(2021)
Sam Ade Jacobs
,
Brian Van Essen
,
David Hysom
,
Jae-Seung Yeom
,
Tim Moon
,
Rushil Anirudh
,
Jayaraman J. Thiagarajan
,
Shusen Liu
,
Peer-Timo Bremer
,
Jim Gaffney
,
Tom Benson
,
Peter B. Robinson
,
J. Luc Peterson
,
Brian K. Spears
Parallelizing Training of Deep Generative Models on Massive Scientific Datasets.
CoRR
(2019)
Nikoli Dryden
,
Naoya Maruyama
,
Tom Benson
,
Tim Moon
,
Marc Snir
,
Brian Van Essen
Improving Strong-Scaling of CNN Training by Exploiting Finer-Grained Parallelism.
CoRR
(2019)
Nikoli Dryden
,
Naoya Maruyama
,
Tim Moon
,
Tom Benson
,
Marc Snir
,
Brian Van Essen
Channel and filter parallelism for large-scale CNN training.
SC
(2019)
Sam Ade Jacobs
,
Jim Gaffney
,
Tom Benson
,
Peter B. Robinson
,
J. Luc Peterson
,
Brian K. Spears
,
Brian Van Essen
,
David Hysom
,
Jae-Seung Yeom
,
Tim Moon
,
Rushil Anirudh
,
Jayaraman J. Thiagarajan
,
Shusen Liu
,
Peer-Timo Bremer
Parallelizing Training of Deep Generative Models on Massive Scientific Datasets.
CLUSTER
(2019)
Nikoli Dryden
,
Naoya Maruyama
,
Tom Benson
,
Tim Moon
,
Marc Snir
,
Brian Van Essen
Improving Strong-Scaling of CNN Training by Exploiting Finer-Grained Parallelism.
IPDPS
(2019)
Nikoli Dryden
,
Tim Moon
,
Sam Ade Jacobs
,
Brian Van Essen
Communication Quantization for Data-Parallel Training of Deep Neural Networks.
MLHPC@SC
(2016)
Tim Moon
,
Jack Poulson
Accelerating eigenvector and pseudospectra computation using blocked multi-shift triangular solves.
CoRR
(2016)