Login / Signup
Sofia S. Villar
Publication Activity (10 Years)
Years Active: 2009-2024
Publications (10 Years): 13
Top Topics
Multi Armed Bandit
Missing Data
Clinical Trials
Uniform Random
Top Venues
CoRR
Comput. Stat. Data Anal.
FAccT
ICML
</>
Publications
</>
Harsh Kumar
,
Tong Li
,
Jiakai Shi
,
Ilya Musabirov
,
Rachel Kornfield
,
Jonah Meyerhoff
,
Ananya Bhattacharjee
,
Chris J. Karr
,
Theresa Nguyen
,
David C. Mohr
,
Anna N. Rafferty
,
Sofia S. Villar
,
Nina Deliu
,
Joseph Jay Williams
Using Adaptive Bandit Experiments to Increase and Investigate Engagement in Mental Health.
AAAI
(2024)
Harsh Kumar
,
Tong Li
,
Jiakai Shi
,
Ilya Musabirov
,
Rachel Kornfield
,
Jonah Meyerhoff
,
Ananya Bhattacharjee
,
Chris J. Karr
,
Theresa Nguyen
,
David C. Mohr
,
Anna N. Rafferty
,
Sofia S. Villar
,
Nina Deliu
,
Joseph Jay Williams
Using Adaptive Bandit Experiments to Increase and Investigate Engagement in Mental Health.
CoRR
(2023)
James K. He
,
Sofia S. Villar
,
Lida Mavrogonatou
Computing the Performance of A New Adaptive Sampling Algorithm Based on The Gittins Index in Experiments with Exponential Rewards.
CoRR
(2023)
Lida Mavrogonatou
,
Yuxuan Sun
,
David S. Robertson
,
Sofia S. Villar
A comparison of allocation strategies for optimising clinical trial designs under variance heterogeneity.
Comput. Stat. Data Anal.
176 (2022)
Isabel Chien
,
Nina Deliu
,
Richard E. Turner
,
Adrian Weller
,
Sofia S. Villar
,
Niki Kilbertus
Multi-disciplinary fairness considerations in machine learning for clinical trials.
CoRR
(2022)
Xijin Chen
,
Kim May Lee
,
Sofia S. Villar
,
David S. Robertson
Some performance considerations when using multi-armed bandit algorithms in the presence of missing data.
CoRR
(2022)
Isabel Chien
,
Nina Deliu
,
Richard Turner
,
Adrian Weller
,
Sofia S. Villar
,
Niki Kilbertus
Multi-disciplinary fairness considerations in machine learning for clinical trials.
FAccT
(2022)
Nina Deliu
,
Joseph Jay Williams
,
Sofia S. Villar
Efficient Inference Without Trading-off Regret in Bandits: An Allocation Probability Test for Thompson Sampling.
CoRR
(2021)
Jacob Nogas
,
Tong Li
,
Fernando J. Yanez
,
Arghavan Modiri
,
Nina Deliu
,
Ben Prystawski
,
Sofia S. Villar
,
Anna N. Rafferty
,
Joseph Jay Williams
Algorithms for Adaptive Experiments that Trade-off Statistical Analysis with Reward: Combining Uniform Random Assignment and Reward Maximization.
CoRR
(2021)
Joseph Jay Williams
,
Jacob Nogas
,
Nina Deliu
,
Hammad Shaikh
,
Sofia S. Villar
,
Audrey Durand
,
Anna N. Rafferty
Challenges in Statistical Analysis of Data Collected by a Bandit Algorithm: An Empirical Exploration in Applications to Adaptively Randomized Experiments.
CoRR
(2021)
Cong Shen
,
Zhiyang Wang
,
Sofia S. Villar
,
Mihaela van der Schaar
Learning for Dose Allocation in Adaptive Clinical Trials with Safety Constraints.
ICML
(2020)
Cong Shen
,
Zhiyang Wang
,
Sofia S. Villar
,
Mihaela van der Schaar
Learning for Dose Allocation in Adaptive Clinical Trials with Safety Constraints.
CoRR
(2020)
S. Faye Williamson
,
Peter Jacko
,
Sofia S. Villar
,
Thomas Jaki
A Bayesian adaptive design for clinical trials in rare diseases.
Comput. Stat. Data Anal.
113 (2017)
Peter Jacko
,
Sofia S. Villar
Opportunistic schedulers for optimal scheduling of flows in wireless systems with ARQ feedback.
International Teletraffic Congress
(2012)
José Niño-Mora
,
Sofia S. Villar
Sensor scheduling for hunting elusive hiding targets via whittle's restless bandit index policy.
NetGCoop
(2011)
José Niño-Mora
,
Sofia S. Villar
Multitarget tracking via restless bandit marginal productivity indices and Kalman filter in discrete time.
CDC
(2009)