Login / Signup
Anton Arnold
ORCID
Publication Activity (10 Years)
Years Active: 1998-2024
Publications (10 Years): 17
Top Topics
Wave Equation
Step Size
Boundary Conditions
Finite Difference
Top Venues
CoRR
J. Comput. Phys.
FDM
J. Comput. Appl. Math.
</>
Publications
</>
Anton Arnold
,
Jannis Körner
WKB-based third order method for the highly oscillatory 1D stationary Schrödinger equation.
CoRR
(2024)
Anton Arnold
,
Christian Klein
,
Jannis Körner
,
Jens Markus Melenk
Optimally truncated WKB approximation for the 1D stationary Schrödinger equation in the highly oscillatory regime.
CoRR
(2024)
Anton Arnold
,
Jannis Körner
High-order WKB-based Method For The 1D Stationary Schrödinger Equation In The Semi-classical Limit.
CoRR
(2023)
Franz Achleitner
,
Anton Arnold
,
Ansgar Jüngel
Hypocoercivity for Linear ODEs and Strong Stability for Runge-Kutta Methods.
CoRR
(2023)
Franz Achleitner
,
Anton Arnold
,
Ansgar Jüngel
Necessary and sufficient conditions for strong stability of explicit Runge-Kutta methods.
CoRR
(2023)
Jannis Körner
,
Anton Arnold
,
Christian Klein
,
Jens Markus Melenk
Optimally truncated WKB approximation for the highly oscillatory stationary 1D Schrödinger equation.
CoRR
(2023)
Jannis Körner
,
Anton Arnold
,
Kirian Döpfner
WKB-based scheme with adaptive step size control for the Schrödinger equation in the highly oscillatory regime.
J. Comput. Appl. Math.
404 (2022)
Anton Arnold
,
Sjoerd Geevers
,
Ilaria Perugia
,
Dmitry Ponomarev
On the limiting amplitude principle for the wave equation with variable coefficients.
CoRR
(2022)
René Hammer
,
Walter Pötz
,
Anton Arnold
Corrigendum to "Single-cone real-space finite difference scheme for the time-dependent Dirac equation" [J. Comput. Phys. 265 (2014) 50-70].
J. Comput. Phys.
457 (2022)
Anton Arnold
,
Sjoerd Geevers
,
Ilaria Perugia
,
Dmitry Ponomarev
An adaptive finite element method for high-frequency scattering problems with smoothly varying coefficients.
Comput. Math. Appl.
109 (2022)
Pierluigi Amodio
,
Anton Arnold
,
Tatiana V. Levitina
,
Giuseppina Settanni
,
Ewa B. Weinmüller
On the Abramov approach for the approximation of whispering gallery modes in prolate spheroids.
Appl. Math. Comput.
409 (2021)
Jannis Körner
,
Anton Arnold
,
Kirian Döpfner
WKB-based scheme with adaptive step size control for the Schrödinger equation in the highly oscillatory regime.
CoRR
(2021)
Anton Arnold
,
Sjoerd Geevers
,
Ilaria Perugia
,
Dmitry Ponomarev
An adaptive finite element method for high-frequency scattering problems with variable coefficients.
CoRR
(2021)
Anton Arnold
,
Claudia Negulescu
Stationary Schrödinger equation in the semi-classical limit: numerical coupling of oscillatory and evanescent regions.
Numerische Mathematik
138 (2) (2018)
Dominik Sturzer
,
Anton Arnold
,
Andreas Kugi
Closed-loop stability analysis of a gantry crane with heavy chain and payload.
Int. J. Control
91 (8) (2018)
Lei Bian
,
Gang Pang
,
Shaoqiang Tang
,
Anton Arnold
ALmost EXact boundary conditions for transient Schrödinger-Poisson system.
J. Comput. Phys.
313 (2016)
Maja Miletic
,
Dominik Sturzer
,
Anton Arnold
,
Andreas Kugi
Stability of an Euler-Bernoulli Beam With a Nonlinear Dynamic Feedback System.
IEEE Trans. Autom. Control.
61 (10) (2016)
Anton Arnold
,
Matthias Ehrhardt
A Transparent Boundary Condition for an Elastic Bottom in Underwater Acoustics.
FDM
(2014)
René Hammer
,
Walter Pötz
,
Anton Arnold
Single-cone real-space finite difference scheme for the time-dependent Dirac equation.
J. Comput. Phys.
265 (2014)
René Hammer
,
Walter Pötz
,
Anton Arnold
A dispersion and norm preserving finite difference scheme with transparent boundary conditions for the Dirac equation in (1+1)D.
J. Comput. Phys.
256 (2014)
Anton Arnold
,
Naoufel Ben Abdallah
,
Claudia Negulescu
WKB-Based Schemes for the Oscillatory 1D Schrödinger Equation in the Semiclassical Limit.
SIAM J. Numer. Anal.
49 (4) (2011)
Anton Arnold
,
Maike Schulte
Transparent boundary conditions for quantum-waveguide simulations.
Math. Comput. Simul.
79 (4) (2008)
Anton Arnold
Numerically Absorbing Boundary Conditions for Quantum Evolution Equations.
VLSI Design
1998 (1) (1998)