Login / Signup
DistributedML@CoNEXT
2020
2023
2020
2023
Keyphrases
Publications
2023
Jihao Xin
,
Ivan Ilin
,
Shunkang Zhang
,
Marco Canini
,
Peter Richtárik
Kimad: Adaptive Gradient Compression with Bandwidth Awareness.
DistributedML@CoNEXT
(2023)
Lars Wulfert
,
Navidreza Asadi
,
Wen-Yu Chung
,
Christian Wiede
,
Anton Grabmaier
Adaptive Decentralized Federated Gossip Learning for Resource-Constrained IoT Devices.
DistributedML@CoNEXT
(2023)
Dimitris Stripelis
,
Chrysovalantis Anastasiou
,
Patrick Toral
,
Armaghan Asghar
,
José Luis Ambite
MetisFL: An Embarrassingly Parallelized Controller for Scalable & Efficient Federated Learning Workflows.
DistributedML@CoNEXT
(2023)
Sanjay Sri Vallabh Singapuram
,
Chuheng Hu
,
Fan Lai
,
Chengsong Zhang
,
Mosharaf Chowdhury
Flamingo: A User-Centric System for Fast and Energy-Efficient DNN Training on Smartphones.
DistributedML@CoNEXT
(2023)
Hongrui Shi
,
Valentin Radu
,
Po Yang
Lightweight Workloads in Heterogeneous Federated Learning via Few-shot Learning.
DistributedML@CoNEXT
(2023)
Grigory Malinovsky
,
Konstantin Mishchenko
,
Peter Richtárik
Server-Side Stepsizes and Sampling Without Replacement Provably Help in Federated Optimization.
DistributedML@CoNEXT
(2023)
Konstantin Burlachenko
,
Abdulmajeed Alrowithi
,
Fahad Ali Albalawi
,
Peter Richtárik
Federated Learning is Better with Non-Homomorphic Encryption.
DistributedML@CoNEXT
(2023)
Proceedings of the 4th International Workshop on Distributed Machine Learning, DistributedML 2023, Paris, France, 8 December 2023
DistributedML@CoNEXT
(2023)
2021
DistributedML '21: Proceedings of the 2nd ACM International Workshop on Distributed Machine Learning, Virtual Event / Munich, Germany, 7 December 2021
DistributedML@CoNEXT
(2021)
Kwing Hei Li
,
Pedro Porto Buarque de Gusmão
,
Daniel J. Beutel
,
Nicholas D. Lane
Secure aggregation for federated learning in flower.
DistributedML@CoNEXT
(2021)
Hadjer Benkraouda
,
Klara Nahrstedt
Image reconstruction attacks on distributed machine learning models.
DistributedML@CoNEXT
(2021)
Konstantin Burlachenko
,
Samuel Horváth
,
Peter Richtárik
FL_PyTorch: optimization research simulator for federated learning.
DistributedML@CoNEXT
(2021)
Adarsh Kumar
,
Kausik Subramanian
,
Shivaram Venkataraman
,
Aditya Akella
Doing more by doing less: how structured partial backpropagation improves deep learning clusters.
DistributedML@CoNEXT
(2021)
Oliver Thompson
,
Anna Maria Mandalari
,
Hamed Haddadi
Rapid IoT device identification at the edge.
DistributedML@CoNEXT
(2021)
2020
DistributedML@CoNEXT 2020: Proceedings of the 1st Workshop on Distributed Machine Learning, Barcelona, Spain, December 1, 2020
DistributedML@CoNEXT
(2020)
Moritz Meister
,
Sina Sheikholeslami
,
Amir H. Payberah
,
Vladimir Vlassov
,
Jim Dowling
Maggy: Scalable Asynchronous Parallel Hyperparameter Search.
DistributedML@CoNEXT
(2020)
Rishikesh R. Gajjala
,
Shashwat Banchhor
,
Ahmed M. Abdelmoniem
,
Aritra Dutta
,
Marco Canini
,
Panos Kalnis
Huffman Coding Based Encoding Techniques for Fast Distributed Deep Learning.
DistributedML@CoNEXT
(2020)
Nicolas Kourtellis
,
Kleomenis Katevas
,
Diego Perino
FLaaS: Federated Learning as a Service.
DistributedML@CoNEXT
(2020)
Duowen Liu
Accelerating Intra-Party Communication in Vertical Federated Learning with RDMA.
DistributedML@CoNEXT
(2020)
Royson Lee
,
Stylianos I. Venieris
,
Nicholas D. Lane
Neural Enhancement in Content Delivery Systems: The State-of-the-Art and Future Directions.
DistributedML@CoNEXT
(2020)
Yongjin Shin
,
Gihun Lee
,
Seungjae Shin
,
Seyoung Yun
,
Il-Chul Moon
FEWER: Federated Weight Recovery.
DistributedML@CoNEXT
(2020)