Login / Signup
AAAI Spring Symposium: MLPS
2021
2021
2021
Keyphrases
Publications
2021
Peter Yichen Chen
,
Maurizio Chiaramonte
,
Eitan Grinspun
,
Kevin Carlberg
Model Reduction for the Material Point Method on Nonlinear Manifolds Using Deep Learning.
AAAI Spring Symposium: MLPS
(2021)
Adi Hanuka
,
Owen Convery
Accurate Machine Learning-based Diagnostic with Quantified Uncertainties.
AAAI Spring Symposium: MLPS
(2021)
Zeenat Ali
,
Dorsa Ziaei
,
Jennifer Sleeman
,
Zhifeng Yang
,
Milton Halem
LSTMs for Inferring Planetary Boundary Layer Height (PBLH).
AAAI Spring Symposium: MLPS
(2021)
Ben Adcock
,
Simone Brugiapaglia
,
Nick C. Dexter
,
Sebastian Moraga
Learning High-Dimensional Hilbert-Valued Functions With Deep Neural Networks From Limited Data.
AAAI Spring Symposium: MLPS
(2021)
Balakrishna D. R
,
Kamalkumar Rathinasamy
,
Avijit Das
,
Keerthi Ashwin
,
Vani Sivasankaran
,
Soundararajan Rajendran
Physics Informed Deep Learning for Well Test Analysis.
AAAI Spring Symposium: MLPS
(2021)
Levi D. McClenny
,
Ulisses M. Braga-Neto
Self-Adaptive Physics-Informed Neural Networks using a Soft Attention Mechanism.
AAAI Spring Symposium: MLPS
(2021)
Akinori Asahara
,
Hidekazu Morita
,
Kanta Ono
,
Masao Yano
,
Chiharu Mitsumata
,
Tetsuya Shoji
,
Kotaro Saito
Bayesian-Inference-based Inverse Estimation of Small Angle Scattering.
AAAI Spring Symposium: MLPS
(2021)
Kookjin Lee
,
Nathaniel Trask
,
Ravi G. Patel
,
Mamikon A. Gulian
,
Eric C. Cyr
Partition of Unity Networks: Deep HP-Approximation.
AAAI Spring Symposium: MLPS
(2021)
Ameya D. Jagtap
,
George E. Karniadakis
Extended Physics-informed Neural Networks (XPINNs): A Generalized Space-Time Domain Decomposition based Deep Learning Framework for Nonlinear Partial Differential Equations.
AAAI Spring Symposium: MLPS
(2021)
Zhongkai Shangguan
,
Lei Lin
,
Wencheng Wu
,
Beilei Xu
Neural Process for Black-box Model Optimization Under Bayesian Framework.
AAAI Spring Symposium: MLPS
(2021)
Ryan Lopez
,
Paul J. Atzberger
Variational Autoencoders for Learning Nonlinear Dynamics of PDEs and Reductions.
AAAI Spring Symposium: MLPS
(2021)
Mojtaba Forghani
,
Yizhou Qian
,
Jonghyun Lee
,
Matthew W. Farthing
,
Tyler J. Hesser
,
Peter K. Kitanidis
,
Eric Darve
Deep Learning-based Fast Solver of the Shallow Water Equations.
AAAI Spring Symposium: MLPS
(2021)
Mohannad Elhamod
,
Jie Bu
,
Christopher Singh
,
Matthew Redell
,
Abantika Ghosh
,
Viktor Podolskiy
,
Wei-Cheng Lee
,
Anuj Karpatne
Learning Physics-guided Neural Networks with Competing Physics Loss: A Summary of Results in Solving Eigenvalue Problems.
AAAI Spring Symposium: MLPS
(2021)
Jan Felix Heyse
,
Aashwin Ananda Mishra
,
Gianluca Iaccarino
Data Driven Physics Constrained Perturbations for Turbulence Model Uncertainty Estimation.
AAAI Spring Symposium: MLPS
(2021)
Andy Huang
,
Nathaniel Trask
,
Christopher Brissette
,
Xiaozhe Hu
Greedy Fiedler Spectral Partitioning for Data-driven Discrete Exterior Calculus.
AAAI Spring Symposium: MLPS
(2021)
Yuan Yin
,
Ibrahim Ayed
,
Emmanuel de Bézenac
,
Patrick Gallinari
Learning Dynamical Systems across Environments.
AAAI Spring Symposium: MLPS
(2021)
Xiaolong He
,
Qizhi He
,
Jiun-Shyan Chen
Deep Autoencoders for Nonlinear Physics-Constrained Data-Driven Computational Framework with Application to Biological Tissue Modeling.
AAAI Spring Symposium: MLPS
(2021)
Huaiqian You
,
Yue Yu
,
Stewart Silling
,
Marta D'Elia
Data-driven Learning of Nonlocal Models: from high-fidelity simulations to constitutive laws.
AAAI Spring Symposium: MLPS
(2021)
Zehao Jin
,
Joshua Yao-Yu Lin
,
Siao-Fong Li
Learning the Principle of Least Action with Reinforcement Learning.
AAAI Spring Symposium: MLPS
(2021)
Sourav Dutta
,
Peter Rivera-Casillas
,
Matthew W. Farthing
Neural Ordinary Differential Equations for Data-Driven Reduced Order Modeling of Environmental Hydrodynamics.
AAAI Spring Symposium: MLPS
(2021)
Ranjan Anantharaman
,
Yingbo Ma
,
Shashi Gowda
,
Chris Laughman
,
Viral B. Shah
,
Alan Edelman
,
Christopher Rackauckas
Accelerating Simulation of Stiff Nonlinear Systems using Continuous-Time Echo State Networks.
AAAI Spring Symposium: MLPS
(2021)
Jonghyun Lee
,
Eric F. Darve
,
Peter K. Kitanidis
,
Matthew W. Farthing
,
Tyler J. Hesser
Preface.
AAAI Spring Symposium: MLPS
(2021)
Sanghyun Lee
,
Teeratorn Kadeethum
Physics-informed Neural Networks for Solving Coupled Flow and Transport System.
AAAI Spring Symposium: MLPS
(2021)
Arijit Sehanobish
,
Hector H. Corzo
,
Onur Kara
,
David van Dijk
Learning Potentials of Quantum Systems using Deep Neural Networks.
AAAI Spring Symposium: MLPS
(2021)
Søren Taverniers
,
Eric Joseph Hall
,
Markos A. Katsoulakis
,
Daniel M. Tartakovsky
Graph-Informed Neural Networks.
AAAI Spring Symposium: MLPS
(2021)
Gert-Jan Both
,
Gijs Vermarien
,
Remy Kusters
Sparsely Constrained Neural Networks for Model Discovery of PDEs.
AAAI Spring Symposium: MLPS
(2021)
Luca Bottero
,
Francesco Calisto
,
Giovanni Graziano
,
Valerio Pagliarino
,
Martina Scauda
,
Sara Tiengo
,
Simone Azeglio
Physics-Informed Machine Learning Simulator for Wildfire Propagation.
AAAI Spring Symposium: MLPS
(2021)
Florian Rehm
,
Sofia Vallecorsa
,
Kerstin Borras
,
Dirk Krücker
Validation of Deep Convolutional Generative Adversarial Networks for High Energy Physics Calorimeter Simulations.
AAAI Spring Symposium: MLPS
(2021)
Alisha Sharma
,
Kaiyan Shi
,
Yiling Qiao
,
Matthew Ziemann
Modeling Physically-Consistent, Chaotic Spatiotemporal Dynamics with Echo State Networks.
AAAI Spring Symposium: MLPS
(2021)
Sungyong Seo
,
Yan Liu
Graph Networks with Physics-aware Knowledge Informed in Latent Space.
AAAI Spring Symposium: MLPS
(2021)
Hongkyu Yoon
,
Darryl J. Melander
,
Stephen J. Verzi
Machine Learning Application for Permeability Estimation of Three-Dimensional Rock Images.
AAAI Spring Symposium: MLPS
(2021)
Randi Wang
,
Morad Behandish
Surrogate Modeling for Physical Systems with Preserved Properties and Adjustable Tradeoffs.
AAAI Spring Symposium: MLPS
(2021)
Pierre-Yves Lagrave
,
Mathieu Riou
Toward Geometrical Robustness with Hybrid Deep Learning and Differential Invariants Theory.
AAAI Spring Symposium: MLPS
(2021)
Mohammadmehdi Ataei
,
Erfan Pirmorad
,
Franco Costa
,
Sejin Han
,
Chul B. Park
,
Markus Bussmann
A Deep Learning Algorithm for Piecewise Linear Interface Construction (PLIC).
AAAI Spring Symposium: MLPS
(2021)
Ravi G. Patel
,
Nathaniel Trask
,
Mamikon A. Gulian
,
Eric C. Cyr
A Block Coordinate Descent Optimizer for Classification Problems Exploiting Convexity.
AAAI Spring Symposium: MLPS
(2021)
Steven Atkinson
,
Yiming Zhang
,
Liping Wang
Discovery of Physics and Characterization of Microstructure from Data with Bayesian Hidden Physics Models.
AAAI Spring Symposium: MLPS
(2021)
Wai Tong Chung
,
Aashwin Ananda Mishra
,
Nikolaos Perakis
,
Matthias Ihme
Accelerating High-fidelity Combustion Simulations with Classification Algorithms.
AAAI Spring Symposium: MLPS
(2021)
Yoshihiro Osakabe
,
Akinori Asahara
MatVAE: Independently Trained Nested Variational Autoencoder for Generating Chemical Structural Formula.
AAAI Spring Symposium: MLPS
(2021)
Rishith Ellath Meethal
,
Leela Sai Prabhat Reddy Kondamadugula
,
Mohamed Khalil
,
Birgit Obst
,
Roland Wüchner
Generalized Physics-Informed Machine Learning for Transient Physical Systems.
AAAI Spring Symposium: MLPS
(2021)
Morad Behandish
,
John Maxwell III
,
Johan de Kleer
AI Research Associate for Early-Stage Scientific Discovery.
AAAI Spring Symposium: MLPS
(2021)
Waad Subber
,
Piyush Pandita
,
Sayan Ghosh
,
Genghis Khan
,
Liping Wang
,
Roger G. Ghanem
Data-based Discovery of Governing Equations.
AAAI Spring Symposium: MLPS
(2021)
Ryan Mohr
,
Maria Fonoberova
,
Iva Manojlovic
,
Aleksandr Andrejcuk
,
Zlatko Drmac
,
Yannis Kevrekidis
,
Igor Mezic
Applications of Koopman Mode Analysis to Neural Networks.
AAAI Spring Symposium: MLPS
(2021)
Avadhut Sardeshmukh
,
Sreedhar Reddy
,
Gautham B. P.
,
Pushpak Bhattacharyya
TextureVAE: Learning Interpretable Representations of Material Microstructures Using Variational Autoencoders.
AAAI Spring Symposium: MLPS
(2021)
Carlos Jose Gonzalez Rojas
,
Andreas Dengel
,
Mateus Dias Ribeiro
Reduced-order Model for Fluid Flows via Neural Ordinary Differential Equations.
AAAI Spring Symposium: MLPS
(2021)
Kailai Xu
,
Eric Darve
ADCME MPI: Distributed Machine Learning for Computational Engineering.
AAAI Spring Symposium: MLPS
(2021)
Weiqi Ji
,
Weilun Qiu
,
Zhiyu Shi
,
Shaowu Pan
,
Sili Deng
Stiff-PINN: Physics-Informed Neural Network for Stiff Chemical Kinetics.
AAAI Spring Symposium: MLPS
(2021)
Ryan Mohr
,
Allan M. Avila
,
Soham Ghosh
,
Ananta Bhattarai
,
Muqiao Yang
,
Xintian Feng
,
Martin Head-Gordon
,
Ruslan Salakhutdinov
,
Maria Fonoberova
,
Igor Mezic
Combining Programmable Potentials and Neural Networks for Materials Problems.
AAAI Spring Symposium: MLPS
(2021)
Dorsa Ziaei
,
Jennifer Sleeman
,
Milton Halem
,
Vanessa Caicedo
,
Ruben Delgado
,
Belay Demoz
Convolutional LSTM for Planetary Boundary Layer Height (PBLH) Prediction.
AAAI Spring Symposium: MLPS
(2021)
volume 2964, 2021
Proceedings of the AAAI 2021 Spring Symposium on Combining Artificial Intelligence and Machine Learning with Physical Sciences, Stanford, CA, USA, March 22nd - to - 24th, 2021.
AAAI Spring Symposium: MLPS
2964 (2021)
volume 2587, 2020
Proceedings of the AAAI 2020 Spring Symposium on Combining Artificial Intelligence and Machine Learning with Physical Sciences, Stanford, CA, USA, March 23rd - to - 25th, 2020.
AAAI Spring Symposium: MLPS
2587 (2020)