Login / Signup
DGS@ICLR
2019
2019
2019
Keyphrases
Publications
2019
Ðorðe Miladinovic
,
Muhammad Waleed Gondal
,
Bernhard Schölkopf
,
Joachim M. Buhmann
,
Stefan Bauer
Disentangled State Space Models: Unsupervised Learning of dynamics across Heterogeneous Environments.
DGS@ICLR
(2019)
Hirono Okamoto
,
Masahiro Suzuki
,
Itto Higuchi
,
Shohei Ohsawa
,
Yutaka Matsuo
Dual Space Learning with variational Autoencoders.
DGS@ICLR
(2019)
Gabriel Loaiza-Ganem
,
John P. Cunningham
Deep Random Splines for Point Process Intensity Estimation.
DGS@ICLR
(2019)
Mohammadreza Soltani
,
Swayambhoo Jain
,
Abhinav V. Sambasivan
Unsupervised Demixing of Structured Signals from Their Superposition Using GANs.
DGS@ICLR
(2019)
Zijun Zhang
,
Ruixiang Zhang
,
Zongpeng Li
,
Yoshua Bengio
,
Liam Paull
Perceptual Generative Autoencoders.
DGS@ICLR
(2019)
Laurent Dinh
,
Jascha Sohl-Dickstein
,
Razvan Pascanu
,
Hugo Larochelle
A RAD approach to deep mixture models.
DGS@ICLR
(2019)
Alexey A. Gritsenko
,
Jasper Snoek
,
Tim Salimans
On the relationship between Normalising Flows and Variational- and Denoising Autoencoders.
DGS@ICLR
(2019)
Maximilian Ilse
,
Jakub M. Tomczak
,
Christos Louizos
,
Max Welling
DIVA: Domain Invariant Variational Autoencoder.
DGS@ICLR
(2019)
Shuyu Lin
,
Ronald Clark
,
Robert Birke
,
Niki Trigoni
,
Stephen J. Roberts
WiSE-ALE: Wide Sample Estimator for Aggregate Latent Embedding.
DGS@ICLR
(2019)
Mohammad Babaeizadeh
,
Golnaz Ghiasi
Adjustable Real-time Style Transfer.
DGS@ICLR
(2019)
Aditya Grover
,
Jiaming Song
,
Ashish Kapoor
,
Kenneth Tran
,
Alekh Agarwal
,
Eric Horvitz
,
Stefano Ermon
Bias Correction of Learned Generative Models via Likelihood-free Importance Weighting.
DGS@ICLR
(2019)
Chun-Liang Li
,
Manzil Zaheer
,
Yang Zhang
,
Barnabás Póczos
,
Ruslan Salakhutdinov
Point Cloud GAN.
DGS@ICLR
(2019)
Khyathi Raghavi Chandu
,
Eric Nyberg
,
Alan W. Black
Storyboarding of Recipes: Grounded Contextual Generation.
DGS@ICLR
(2019)
Yujia Xie
,
Minshuo Chen
,
Haoming Jiang
,
Tuo Zhao
,
Hongyuan Zha
On Scalable and Efficient Computation of Large Scale Optimal Transport.
DGS@ICLR
(2019)
Deep Generative Models for Highly Structured Data, ICLR 2019 Workshop, New Orleans, Louisiana, United States, May 6, 2019
DGS@ICLR
(2019)
Zhehui Chen
,
Haoming Jiang
,
Yuyang Shi
,
Bo Dai
,
Tuo Zhao
Learning to Defense by Learning to Attack.
DGS@ICLR
(2019)
Septimia Sârbu
,
Luigi Malagò
Variational autoencoders trained with q-deformed lower bounds.
DGS@ICLR
(2019)
Antonio Khalil Moretti
,
Zizhao Wang
,
Luhuan Wu
,
Itsik Pe'er
Smoothing Nonlinear Variational Objectives with Sequential Monte Carlo.
DGS@ICLR
(2019)
David Bau
,
Jun-Yan Zhu
,
Hendrik Strobelt
,
Bolei Zhou
,
Joshua B. Tenenbaum
,
William T. Freeman
,
Antonio Torralba
Visualizing and Understanding GANs.
DGS@ICLR
(2019)
Da Tang
,
Dawen Liang
,
Tony Jebara
,
Nicholas Ruozzi
Correlated Variational Auto-Encoders.
DGS@ICLR
(2019)
Ali Razavi
,
Aäron van den Oord
,
Oriol Vinyals
Generating Diverse High-Resolution Images with VQ-VAE.
DGS@ICLR
(2019)
Christopher Beckham
,
Sina Honari
,
Alex Lamb
,
Vikas Verma
,
Farnoosh Ghadiri
,
R. Devon Hjelm
,
Christopher J. Pal
Adversarial Mixup Resynthesizers.
DGS@ICLR
(2019)
Dieterich Lawson
,
George Tucker
,
Bo Dai
,
Rajesh Ranganath
Revisiting Auxiliary Latent Variables in Generative Models.
DGS@ICLR
(2019)
John Bradshaw
,
Matt J. Kusner
,
Brooks Paige
,
Marwin H. S. Segler
,
José Miguel Hernández-Lobato
Generating Molecules via Chemical Reactions.
DGS@ICLR
(2019)
Vinay Uday Prabhu
,
Sanghyun Han
,
Dian Ang Yap
,
Mihail Douhaniaris
,
Preethi Seshadri
A Seed-Augment-Train Framework for Universal Digit Classification.
DGS@ICLR
(2019)
Wayne Wu
,
Kaidi Cao
,
Cheng Li
,
Chen Qian
,
Chen Change Loy
Disentangling Content and Style via Unsupervised Geometry Distillation.
DGS@ICLR
(2019)
Gaurav Mittal
,
Shubham Agrawal
,
Anuva Agarwal
,
Sushant Mehta
,
Tanya Marwah
Interactive Image Generation Using Scene Graphs.
DGS@ICLR
(2019)
Sidak Pal Singh
,
Andreas Hug
,
Aymeric Dieuleveut
,
Martin Jaggi
Context Mover's Distance & Barycenters: Optimal transport of contexts for building representations.
DGS@ICLR
(2019)
Pierre L. Dognin
,
Igor Melnyk
,
Youssef Mroueh
,
Jerret Ross
,
Tom Sercu
Improved Adversarial Image Captioning.
DGS@ICLR
(2019)
Aditya Grover
,
Christopher Chute
,
Rui Shu
,
Zhangjie Cao
,
Stefano Ermon
AlignFlow: Learning from multiple domains via normalizing flows.
DGS@ICLR
(2019)
Faisal Mahmood
,
Wenhao Xu
,
Nicholas J. Durr
,
Jeremiah W. Johnson
,
Alan L. Yuille
Structured Prediction using cGANs with Fusion Discriminator.
DGS@ICLR
(2019)
Seyed Kamyar Seyed Ghasemipour
,
Shane Gu
,
Richard S. Zemel
Understanding the Relation Between Maximum-Entropy Inverse Reinforcement Learning and Behaviour Cloning.
DGS@ICLR
(2019)
Tom Sercu
,
Sebastian Gehrmann
,
Hendrik Strobelt
,
Payel Das
,
Inkit Padhi
,
Cícero Nogueira dos Santos
,
Kahini Wadhawan
,
Vijil Chenthamarakshan
Interactive Visual Exploration of Latent Space (IVELS) for peptide auto-encoder model selection.
DGS@ICLR
(2019)
Shuangfei Fan
,
Bert Huang
Deep Generative Models for Generating Labeled Graphs.
DGS@ICLR
(2019)
Namrata Anand
,
Raphael Eguchi
,
Po-Ssu Huang
Fully differentiable full-atom protein backbone generation.
DGS@ICLR
(2019)
Thomas Unterthiner
,
Sjoerd van Steenkiste
,
Karol Kurach
,
Raphaël Marinier
,
Marcin Michalski
,
Sylvain Gelly
FVD: A new Metric for Video Generation.
DGS@ICLR
(2019)
James Lucas
,
George Tucker
,
Roger B. Grosse
,
Mohammad Norouzi
Understanding Posterior Collapse in Generative Latent Variable Models.
DGS@ICLR
(2019)
Samaneh Azadi
,
Deepak Pathak
,
Sayna Ebrahimi
,
Trevor Darrell
Compositional GAN (Extended Abstract): Learning Image-Conditional Binary Composition.
DGS@ICLR
(2019)
Sharon Zhou
,
Mitchell L. Gordon
,
Ranjay Krishna
,
Austin Narcomey
,
Durim Morina
,
Michael S. Bernstein
HYPE: Human-eYe Perceptual Evaluation of Generative Models.
DGS@ICLR
(2019)
Dustin Tran
,
Keyon Vafa
,
Kumar Krishna Agrawal
,
Laurent Dinh
,
Ben Poole
Discrete Flows: Invertible Generative Models of Discrete Data.
DGS@ICLR
(2019)
Raphael Gontijo Lopes
,
David Ha
,
Douglas Eck
,
Jonathon Shlens
A Learned Representation for Scalable Vector Graphics.
DGS@ICLR
(2019)
John Ingraham
,
Vikas K. Garg
,
Regina Barzilay
,
Tommi S. Jaakkola
Generative Models for Graph-Based Protein Design.
DGS@ICLR
(2019)
Sam Wiseman
Learning Deep Latent-variable MRFs with Amortized Bethe Free Energy Minimization.
DGS@ICLR
(2019)