​
Login / Signup
Wei Deng
Publication Activity (10 Years)
Years Active: 2017-2024
Publications (10 Years): 28
Top Topics
Diffusion Models
Stochastic Gradient
Top Venues
CoRR
NeurIPS
J. Comput. Phys.
ICLR
</>
Publications
</>
Haoyang Zheng
,
Wei Deng
,
Christian Moya
,
Guang Lin
Accelerating Approximate Thompson Sampling with Underdamped Langevin Monte Carlo.
AISTATS
(2024)
Haoyang Zheng
,
Wei Deng
,
Christian Moya
,
Guang Lin
Accelerating Approximate Thompson Sampling with Underdamped Langevin Monte Carlo.
CoRR
(2024)
Haoyang Zheng
,
Hengrong Du
,
Qi Feng
,
Wei Deng
,
Guang Lin
Constrained Exploration via Reflected Replica Exchange Stochastic Gradient Langevin Dynamics.
CoRR
(2024)
Wei Deng
,
Weijian Luo
,
Yixin Tan
,
Marin Bilos
,
Yu Chen
,
Yuriy Nevmyvaka
,
Ricky T. Q. Chen
Variational Schrödinger Diffusion Models.
CoRR
(2024)
Wei Deng
,
Qian Zhang
,
Qi Feng
,
Faming Liang
,
Guang Lin
Non-reversible Parallel Tempering for Deep Posterior Approximation.
AAAI
(2023)
Wei Deng
,
Siqi Liang
,
Botao Hao
,
Guang Lin
,
Faming Liang
Interacting Contour Stochastic Gradient Langevin Dynamics.
CoRR
(2022)
Wei Deng
,
Siqi Liang
,
Botao Hao
,
Guang Lin
,
Faming Liang
Interacting Contour Stochastic Gradient Langevin Dynamics.
ICLR
(2022)
Wei Deng
,
Guang Lin
,
Faming Liang
An adaptively weighted stochastic gradient MCMC algorithm for Monte Carlo simulation and global optimization.
Stat. Comput.
32 (4) (2022)
Wei Deng
,
Qian Zhang
,
Qi Feng
,
Faming Liang
,
Guang Lin
Non-reversible Parallel Tempering for Deep Posterior Approximation.
CoRR
(2022)
Wei Deng
,
Yi-An Ma
,
Zhao Song
,
Qian Zhang
,
Guang Lin
On Convergence of Federated Averaging Langevin Dynamics.
CoRR
(2021)
Yating Wang
,
Wei Deng
,
Guang Lin
Bayesian sparse learning with preconditioned stochastic gradient MCMC and its applications.
J. Comput. Phys.
432 (2021)
Wei Deng
,
Qi Feng
,
Georgios Karagiannis
,
Guang Lin
,
Faming Liang
Accelerating Convergence of Replica Exchange Stochastic Gradient MCMC via Variance Reduction.
ICLR
(2021)
Botao Hao
,
Tor Lattimore
,
Wei Deng
Information Directed Sampling for Sparse Linear Bandits.
NeurIPS
(2021)
Wei Deng
,
Junwei Pan
,
Tian Zhou
,
Deguang Kong
,
Aaron Flores
,
Guang Lin
DeepLight: Deep Lightweight Feature Interactions for Accelerating CTR Predictions in Ad Serving.
WSDM
(2021)
Botao Hao
,
Tor Lattimore
,
Wei Deng
Information Directed Sampling for Sparse Linear Bandits.
CoRR
(2021)
Yating Wang
,
Wei Deng
,
Guang Lin
An adaptive Hessian approximated stochastic gradient MCMC method.
J. Comput. Phys.
432 (2021)
Wei Deng
,
Qi Feng
,
Liyao Gao
,
Faming Liang
,
Guang Lin
Non-convex Learning via Replica Exchange Stochastic Gradient MCMC.
ICML
(2020)
Wei Deng
,
Guang Lin
,
Faming Liang
A Contour Stochastic Gradient Langevin Dynamics Algorithm for Simulations of Multi-modal Distributions.
CoRR
(2020)
Wei Deng
,
Qi Feng
,
Georgios Karagiannis
,
Guang Lin
,
Faming Liang
Accelerating Convergence of Replica Exchange Stochastic Gradient MCMC via Variance Reduction.
CoRR
(2020)
Wei Deng
,
Guang Lin
,
Faming Liang
A Contour Stochastic Gradient Langevin Dynamics Algorithm for Simulations of Multi-modal Distributions.
NeurIPS
(2020)
Yating Wang
,
Wei Deng
,
Guang Lin
Bayesian Sparse learning with preconditioned stochastic gradient MCMC and its applications.
CoRR
(2020)
Yating Wang
,
Wei Deng
,
Guang Lin
An adaptive Hessian approximated stochastic gradient MCMC method.
CoRR
(2020)
Wei Deng
,
Qi Feng
,
Liyao Gao
,
Faming Liang
,
Guang Lin
Non-convex Learning via Replica Exchange Stochastic Gradient MCMC.
CoRR
(2020)
Wei Deng
,
Junwei Pan
,
Tian Zhou
,
Aaron Flores
,
Guang Lin
DeepLight: Deep Lightweight Feature Interactions for Accelerating CTR Predictions in Ad Serving.
CoRR
(2020)
Wei Deng
,
Xiao Zhang
,
Faming Liang
,
Guang Lin
An Adaptive Empirical Bayesian Method for Sparse Deep Learning.
CoRR
(2019)
Wei Deng
,
Xiao Zhang
,
Faming Liang
,
Guang Lin
An Adaptive Empirical Bayesian Method for Sparse Deep Learning.
NeurIPS
(2019)
Rongrong Zhang
,
Wei Deng
,
Yu Michael Zhu
Using Deep Neural Networks to Automate Large Scale Statistical Analysis for Big Data Applications.
CoRR
(2017)
Rongrong Zhang
,
Wei Deng
,
Yu Michael Zhu
Using Deep Neural Networks to Automate Large Scale Statistical Analysis for Big Data Applications.
ACML
(2017)