​
Login / Signup
Reese Jones
ORCID
Publication Activity (10 Years)
Years Active: 2012-2022
Publications (10 Years): 6
Top Topics
Gaussian Process
Deep Learning
Variational Inference
Convolutional Neural Network
Top Venues
CoRR
Mach. Learn. Sci. Technol.
Multiscale Model. Simul.
</>
Publications
</>
Wyatt Bridgman
,
Xiaoxuan Zhang
,
Gregory H. Teichert
,
Mohammad Khalil
,
Krishna C. Garikipati
,
Reese Jones
A heteroencoder architecture for prediction of failure locations in porous metals using variational inference.
CoRR
(2022)
Jan Niklas Fuhg
,
Craig M. Hamel
,
Kyle Johnson
,
Reese Jones
,
Nikolaos Bouklas
Modular machine learning-based elastoplasticity: generalization in the context of limited data.
CoRR
(2022)
Reese Jones
,
Cosmin Safta
,
Ari Frankel
Deep learning and multi-level featurization of graph representations of microstructural data.
CoRR
(2022)
Ari Frankel
,
Cosmin Safta
,
Coleman Alleman
,
Reese Jones
Mesh-based graph convolutional neural network models of processes with complex initial states.
CoRR
(2021)
Ari Frankel
,
Kousuke Tachida
,
Reese Jones
Prediction of the evolution of the stress field of polycrystals undergoing elastic-plastic deformation with a hybrid neural network model.
Mach. Learn. Sci. Technol.
1 (3) (2020)
Ari Frankel
,
Reese Jones
,
Laura P. Swiler
Tensor Basis Gaussian Process Models of Hyperelastic Materials.
CoRR
(2019)
Maher Salloum
,
Khachik Sargsyan
,
Reese Jones
,
Habib N. Najm
,
Bert J. Debusschere
Quantifying Sampling Noise and Parametric Uncertainty in Atomistic-to-Continuum Simulations Using Surrogate Models.
Multiscale Model. Simul.
13 (3) (2015)
Maher Salloum
,
Khachik Sargsyan
,
Reese Jones
,
Bert J. Debusschere
,
Habib N. Najm
,
Helgi Adalsteinsson
A Stochastic Multiscale Coupling Scheme to Account for Sampling Noise in Atomistic-to-Continuum Simulations.
Multiscale Model. Simul.
10 (2) (2012)