Login / Signup
Nikolaos Bouklas
ORCID
Publication Activity (10 Years)
Years Active: 2021-2024
Publications (10 Years): 22
Top Topics
Neural Network
Reduced Order
Gaussian Process
Multiscale
Top Venues
CoRR
J. Comput. Phys.
Comput. Geosci.
Nat. Comput. Sci.
</>
Publications
</>
Govinda Anantha Padmanabha
,
Jan Niklas Fuhg
,
Cosmin Safta
,
Reese E. Jones
,
Nikolaos Bouklas
Improving the performance of Stein variational inference through extreme sparsification of physically-constrained neural network models.
CoRR
(2024)
Jan Niklas Fuhg
,
Govinda Anantha Padmanabha
,
Nikolaos Bouklas
,
Bahador Bahmani
,
WaiChing Sun
,
Nikolaos N. Vlassis
,
Moritz Flaschel
,
Pietro Carrara
,
Laura De Lorenzis
A review on data-driven constitutive laws for solids.
CoRR
(2024)
Adnan Eghtesad
,
Jan Niklas Fuhg
,
Nikolaos Bouklas
NN-EVP: A physics informed neural network-based elasto-viscoplastic framework for predictions of grain size-aware flow response under large deformations.
CoRR
(2023)
Jan Niklas Fuhg
,
Reese E. Jones
,
Nikolaos Bouklas
Extreme sparsification of physics-augmented neural networks for interpretable model discovery in mechanics.
CoRR
(2023)
Kshitiz Upadhyay
,
Jan Niklas Fuhg
,
Nikolaos Bouklas
,
K. T. Ramesh
Physics-informed Data-driven Discovery of Constitutive Models with Application to Strain-Rate-sensitive Soft Materials.
CoRR
(2023)
Jan Niklas Fuhg
,
Nikolaos Bouklas
,
Reese E. Jones
Stress representations for tensor basis neural networks: alternative formulations to Finger-Rivlin-Ericksen.
CoRR
(2023)
Teeratorn Kadeethum
,
John D. Jakeman
,
Youngsoo Choi
,
Nikolaos Bouklas
,
Hongkyu Yoon
Epistemic Uncertainty-Aware Barlow Twins Reduced Order Modeling for Nonlinear Contact Problems.
IEEE Access
11 (2023)
Jan Niklas Fuhg
,
Nikolaos Bouklas
The mixed Deep Energy Method for resolving concentration features in finite strain hyperelasticity.
J. Comput. Phys.
451 (2022)
Jan Niklas Fuhg
,
Craig M. Hamel
,
Kyle Johnson
,
Reese Jones
,
Nikolaos Bouklas
Modular machine learning-based elastoplasticity: generalization in the context of limited data.
CoRR
(2022)
Jan Niklas Fuhg
,
Arnav Karmarkar
,
Teeratorn Kadeethum
,
Hongkyu Yoon
,
Nikolaos Bouklas
Deep Convolutional Ritz Method: Parametric PDE surrogates without labeled data.
CoRR
(2022)
Teeratorn Kadeethum
,
Daniel O'Malley
,
Youngsoo Choi
,
Hari S. Viswanathan
,
Nikolaos Bouklas
,
Hongkyu Yoon
Continuous conditional generative adversarial networks for data-driven solutions of poroelasticity with heterogeneous material properties.
Comput. Geosci.
167 (2022)
Teeratorn Kadeethum
,
Francesco Ballarin
,
Daniel O'Malley
,
Youngsoo Choi
,
Nikolaos Bouklas
,
Hongkyu Yoon
Reduced order modeling with Barlow Twins self-supervised learning: Navigating the space between linear and nonlinear solution manifolds.
CoRR
(2022)
Jan Niklas Fuhg
,
Nikolaos Bouklas
The mixed deep energy method for resolving concentration features in finite strain hyperelasticity.
CoRR
(2021)
Teeratorn Kadeethum
,
Daniel O'Malley
,
Jan Niklas Fuhg
,
Youngsoo Choi
,
Jonghyun Lee
,
Hari S. Viswanathan
,
Nikolaos Bouklas
A framework for data-driven solution and parameter estimation of PDEs using conditional generative adversarial networks.
Nat. Comput. Sci.
1 (12) (2021)
Teeratorn Kadeethum
,
Francesco Ballarin
,
Y. Choi
,
Daniel O'Malley
,
H. Yoon
,
Nikolaos Bouklas
Non-intrusive reduced order modeling of natural convection in porous media using convolutional autoencoders: comparison with linear subspace techniques.
CoRR
(2021)
Jan Niklas Fuhg
,
Michele Marino
,
Nikolaos Bouklas
Local approximate Gaussian process regression for data-driven constitutive laws: Development and comparison with neural networks.
CoRR
(2021)
Jan Niklas Fuhg
,
Amelie Fau
,
Nikolaos Bouklas
Interval and fuzzy physics-informed neural networks for uncertain fields.
CoRR
(2021)
Jan Niklas Fuhg
,
Nikolaos Bouklas
On physics-informed data-driven isotropic and anisotropic constitutive models through probabilistic machine learning and space-filling sampling.
CoRR
(2021)
Jan Niklas Fuhg
,
Christoph Böhm
,
Nikolaos Bouklas
,
Amelie Fau
,
Peter Wriggers
,
Michele Marino
Model-data-driven constitutive responses: application to a multiscale computational framework.
CoRR
(2021)
Teeratorn Kadeethum
,
Daniel O'Malley
,
Jan Niklas Fuhg
,
Youngsoo Choi
,
Jonghyun Lee
,
Hari S. Viswanathan
,
Nikolaos Bouklas
A framework for data-driven solution and parameter estimation of PDEs using conditional generative adversarial networks.
CoRR
(2021)
Teeratorn Kadeethum
,
Dan O'Malley
,
Y. Choi
,
Hari S. Viswanathan
,
Nikolaos Bouklas
,
Hongkyu Yoon
Continuous conditional generative adversarial networks for data-driven solutions of poroelasticity with heterogeneous material properties.
CoRR
(2021)
Teeratorn Kadeethum
,
Francesco Ballarin
,
Nikolaos Bouklas
Non-intrusive reduced order modeling of poroelasticity of heterogeneous media based on a discontinuous Galerkin approximation.
CoRR
(2021)