Login / Signup
Nian Si
ORCID
Publication Activity (10 Years)
Years Active: 2019-2024
Publications (10 Years): 23
Top Topics
Continuous State Spaces
Bayesian Classification
Kullback Leibler
Feedback Loops
Top Venues
CoRR
ICML
AISTATS
Manag. Sci.
</>
Publications
</>
Shengbo Wang
,
Nian Si
,
Jose H. Blanchet
,
Zhengyuan Zhou
Statistical Learning of Distributionally Robust Stochastic Control in Continuous State Spaces.
CoRR
(2024)
Yewen Fan
,
Nian Si
,
Xiangchen Song
,
Kun Zhang
Calibration-then-Calculation: A Variance Reduced Metric Framework in Deep Click-Through Rate Prediction Models.
CoRR
(2024)
Hao Liu
,
Junze Ye
,
Jose H. Blanchet
,
Nian Si
ScoreFusion: fusing score-based generative models via Kullback-Leibler barycenters.
CoRR
(2024)
Zhihua Zhu
,
Zheng Cai
,
Liang Zheng
,
Nian Si
Seller-Side Experiments under Interference Induced by Feedback Loops in Two-Sided Platforms.
CoRR
(2024)
Nian Si
Tackling Interference Induced by Data Training Loops in A/B Tests: A Weighted Training Approach.
CoRR
(2023)
Yewen Fan
,
Nian Si
,
Kun Zhang
Calibration Matters: Tackling Maximization Bias in Large-scale Advertising Recommendation Systems.
ICLR
(2023)
Nian Si
,
Fan Zhang
,
Zhengyuan Zhou
,
Jose H. Blanchet
Distributionally Robust Batch Contextual Bandits.
Manag. Sci.
69 (10) (2023)
Dilara Aykanat
,
Zeyu Zheng
,
Nian Si
A Preliminary Study of Regularization Framework for Constructing Task-Specific Simulators.
WSC
(2023)
Shengbo Wang
,
Nian Si
,
Jose H. Blanchet
,
Zhengyuan Zhou
On the Foundation of Distributionally Robust Reinforcement Learning.
CoRR
(2023)
Shengbo Wang
,
Nian Si
,
José H. Blanchet
,
Zhengyuan Zhou
A Finite Sample Complexity Bound for Distributionally Robust Q-learning.
AISTATS
(2023)
Shengbo Wang
,
Nian Si
,
Jose H. Blanchet
,
Zhengyuan Zhou
Sample Complexity of Variance-reduced Distributionally Robust Q-learning.
CoRR
(2023)
Baris Ata
,
J. Michael Harrison
,
Nian Si
Singular Control of (Reflected) Brownian Motion: A Computational Method Suitable for Queueing Applications.
CoRR
(2023)
Shengbo Wang
,
Nian Si
,
Jose Blanchet
,
Zhengyuan Zhou
A Finite Sample Complexity Bound for Distributionally Robust Q-learning.
CoRR
(2023)
Baris Ata
,
J. Michael Harrison
,
Nian Si
Drift Control of High-Dimensional RBM: A Computational Method Based on Neural Networks.
CoRR
(2023)
Yewen Fan
,
Nian Si
,
Kun Zhang
Calibration Matters: Tackling Maximization Bias in Large-scale Advertising Recommendation Systems.
CoRR
(2022)
Nian Si
,
Karthyek Murthy
,
Jose H. Blanchet
,
Viet Anh Nguyen
Testing Group Fairness via Optimal Transport Projections.
CoRR
(2021)
Nian Si
,
Karthyek Murthy
,
Jose H. Blanchet
,
Viet Anh Nguyen
Testing Group Fairness via Optimal Transport Projections.
ICML
(2021)
Viet Anh Nguyen
,
Nian Si
,
Jose H. Blanchet
Robust Bayesian Classification Using An Optimistic Score Ratio.
ICML
(2020)
Viet Anh Nguyen
,
Nian Si
,
Jose H. Blanchet
Robust Bayesian Classification Using an Optimistic Score Ratio.
CoRR
(2020)
Nian Si
,
Jose H. Blanchet
,
Soumyadip Ghosh
,
Mark S. Squillante
Quantifying the Empirical Wasserstein Distance to a Set of Measures: Beating the Curse of Dimensionality.
NeurIPS
(2020)
Nian Si
,
Fan Zhang
,
Zhengyuan Zhou
,
Jose H. Blanchet
Distributional Robust Batch Contextual Bandits.
CoRR
(2020)
Nian Si
,
Fan Zhang
,
Zhengyuan Zhou
,
Jose H. Blanchet
Distributionally Robust Policy Evaluation and Learning in Offline Contextual Bandits.
ICML
(2020)
Jose H. Blanchet
,
Nian Si
Optimal uncertainty size in distributionally robust inverse covariance estimation.
Oper. Res. Lett.
47 (6) (2019)