Login / Signup
Luca Saluzzi
ORCID
Publication Activity (10 Years)
Years Active: 2019-2024
Publications (10 Years): 12
Top Topics
Tree Structures
Optimal Control
Hamilton Jacobi Bellman
Navier Stokes
Top Venues
CoRR
SIAM J. Sci. Comput.
CDC
Appl. Math. Comput.
</>
Publications
</>
Mathias Oster
,
Luca Saluzzi
,
Tizian Wenzel
A comparison study of supervised learning techniques for the approximation of high dimensional functions and feedback control.
CoRR
(2024)
Mario Sperl
,
Luca Saluzzi
,
Lars Grüne
,
Dante Kalise
Separable Approximations of Optimal Value Functions Under a Decaying Sensitivity Assumption.
CDC
(2023)
Gerhard Kirsten
,
Luca Saluzzi
A multilinear HJB-POD method for the optimal control of PDEs.
CoRR
(2023)
Maurizio Falcone
,
Gerhard Kirsten
,
Luca Saluzzi
Approximation of optimal control problems for the Navier-Stokes equation via multilinear HJB-POD.
Appl. Math. Comput.
442 (2023)
Sergey Dolgov
,
Dante Kalise
,
Luca Saluzzi
Data-Driven Tensor Train Gradient Cross Approximation for Hamilton-Jacobi-Bellman Equations.
SIAM J. Sci. Comput.
45 (5) (2023)
Sergey Dolgov
,
Dante Kalise
,
Luca Saluzzi
Statistical Proper Orthogonal Decomposition for model reduction in feedback control.
CoRR
(2023)
Sergey Dolgov
,
Dante Kalise
,
Luca Saluzzi
Data-driven Tensor Train Gradient Cross Approximation for Hamilton-Jacobi-Bellman Equations.
CoRR
(2022)
Alessandro Alla
,
Luca Saluzzi
Feedback reconstruction techniques for optimal control problems on a tree structure.
CoRR
(2022)
Sergey Dolgov
,
Dante Kalise
,
Luca Saluzzi
Optimizing semilinear representations for State-dependent Riccati Equation-based feedback control.
CoRR
(2022)
Maurizio Falcone
,
Gerhard Kirsten
,
Luca Saluzzi
Approximation of Optimal Control Problems for the Navier-Stokes equation via multilinear HJB-POD.
CoRR
(2022)
Alessandro Alla
,
Maurizio Falcone
,
Luca Saluzzi
A tree structure algorithm for optimal control problems with state constraints.
CoRR
(2020)
Alessandro Alla
,
Maurizio Falcone
,
Luca Saluzzi
An Efficient DP Algorithm on a Tree-Structure for Finite Horizon Optimal Control Problems.
SIAM J. Sci. Comput.
41 (4) (2019)