​
Login / Signup
Lu Lu
ORCID
Publication Activity (10 Years)
Years Active: 2017-2024
Publications (10 Years): 31
Top Topics
Numerical Examples
Sampling Strategies
Neural Network
Deep Learning
Top Venues
CoRR
J. Comput. Phys.
PLoS Comput. Biol.
SIAM J. Sci. Comput.
</>
Publications
</>
Anran Jiao
,
Qile Yan
,
John Harlim
,
Lu Lu
Solving forward and inverse PDE problems on unknown manifolds via physics-informed neural operators.
CoRR
(2024)
Zhongyi Jiang
,
Min Zhu
,
Lu Lu
Fourier-MIONet: Fourier-enhanced multiple-input neural operators for multiphase modeling of geological carbon sequestration.
Reliab. Eng. Syst. Saf.
251 (2024)
Wensi Wu
,
Mitchell Daneker
,
Kevin T. Turner
,
Matthew A. Jolley
,
Lu Lu
Identifying heterogeneous micromechanical properties of biological tissues via physics-informed neural networks.
CoRR
(2024)
Zhongyi Jiang
,
Min Zhu
,
Dongzhuo Li
,
Qiuzi Li
,
Yanhua O. Yuan
,
Lu Lu
Fourier-MIONet: Fourier-enhanced multiple-input neural operators for multiphase modeling of geological carbon sequestration.
CoRR
(2023)
Benjamin Fan
,
Edward Qiao
,
Anran Jiao
,
Zhouzhou Gu
,
Wenhao Li
,
Lu Lu
Deep Learning for Solving and Estimating Dynamic Macro-Finance Models.
CoRR
(2023)
Patricio Clark Di Leoni
,
Lu Lu
,
Charles Meneveau
,
George Em Karniadakis
,
Tamer A. Zaki
Neural operator prediction of linear instability waves in high-speed boundary layers.
J. Comput. Phys.
474 (2023)
Pengzhan Jin
,
Shuai Meng
,
Lu Lu
MIONet: Learning multiple-input operators via tensor product.
CoRR
(2022)
Mitchell Daneker
,
Zhen Zhang
,
George Em Karniadakis
,
Lu Lu
Systems Biology: Identifiability analysis and parameter identification via systems-biology informed neural networks.
CoRR
(2022)
Pengzhan Jin
,
Shuai Meng
,
Lu Lu
MIONet: Learning Multiple-Input Operators via Tensor Product.
SIAM J. Sci. Comput.
44 (6) (2022)
Wensi Wu
,
Mitchell Daneker
,
Matthew A. Jolley
,
Kevin T. Turner
,
Lu Lu
Effective Data Sampling Strategies and Boundary Condition Constraints of Physics-Informed Neural Networks for Identifying Material Properties in Solid Mechanics.
CoRR
(2022)
Min Zhu
,
Handi Zhang
,
Anran Jiao
,
George Em Karniadakis
,
Lu Lu
Reliable extrapolation of deep neural operators informed by physics or sparse observations.
CoRR
(2022)
Beichuan Deng
,
Yeonjong Shin
,
Lu Lu
,
Zhongqiang Zhang
,
George Em Karniadakis
Approximation rates of DeepONets for learning operators arising from advection-diffusion equations.
Neural Networks
153 (2022)
Jeremy Yu
,
Lu Lu
,
Xuhui Meng
,
George Em Karniadakis
Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems.
CoRR
(2021)
Shengze Cai
,
Zhicheng Wang
,
Lu Lu
,
Tamer A. Zaki
,
George Em Karniadakis
DeepM&Mnet: Inferring the electroconvection multiphysics fields based on operator approximation by neural networks.
J. Comput. Phys.
436 (2021)
Lu Lu
,
Pengzhan Jin
,
Guofei Pang
,
Zhongqiang Zhang
,
George Em Karniadakis
Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators.
Nat. Mach. Intell.
3 (3) (2021)
Beichuan Deng
,
Yeonjong Shin
,
Lu Lu
,
Zhongqiang Zhang
,
George Em Karniadakis
Convergence rate of DeepONets for learning operators arising from advection-diffusion equations.
CoRR
(2021)
He Li
,
Zixiang Leonardo Liu
,
Lu Lu
,
Pierre Buffet
,
George Em Karniadakis
How the spleen reshapes and retains young and old red blood cells: A computational investigation.
PLoS Comput. Biol.
17 (11) (2021)
Yixiang Deng
,
Lu Lu
,
Laura Aponte
,
Angeliki M. Angelidi
,
Vera Novak
,
George Em Karniadakis
,
Christos S. Mantzoros
Deep transfer learning and data augmentation improve glucose levels prediction in type 2 diabetes patients.
npj Digit. Medicine
4 (2021)
Zhiping Mao
,
Lu Lu
,
Olaf Marxen
,
Tamer A. Zaki
,
George Em Karniadakis
DeepM&Mnet for hypersonics: Predicting the coupled flow and finite-rate chemistry behind a normal shock using neural-network approximation of operators.
J. Comput. Phys.
447 (2021)
Lu Lu
,
Xuhui Meng
,
Zhiping Mao
,
George Em Karniadakis
DeepXDE: A Deep Learning Library for Solving Differential Equations.
SIAM Rev.
63 (1) (2021)
Alireza Yazdani
,
Lu Lu
,
Maziar Raissi
,
George Em Karniadakis
Systems biology informed deep learning for inferring parameters and hidden dynamics.
PLoS Comput. Biol.
16 (11) (2020)
Pengzhan Jin
,
Lu Lu
,
Yifa Tang
,
George Em Karniadakis
Quantifying the generalization error in deep learning in terms of data distribution and neural network smoothness.
Neural Networks
130 (2020)
Lu Lu
,
Xuhui Meng
,
Zhiping Mao
,
George Em Karniadakis
DeepXDE: A Deep Learning Library for Solving Differential Equations.
AAAI Spring Symposium: MLPS
(2020)
Lu Lu
,
Xuhui Meng
,
Zhiping Mao
,
George E. Karniadakis
DeepXDE: A deep learning library for solving differential equations.
CoRR
(2019)
Lu Lu
,
Pengzhan Jin
,
George Em Karniadakis
DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators.
CoRR
(2019)
Lu Lu
,
Yeonjong Shin
,
Yanhui Su
,
George E. Karniadakis
Dying ReLU and Initialization: Theory and Numerical Examples.
CoRR
(2019)
Guofei Pang
,
Lu Lu
,
George Em Karniadakis
fPINNs: Fractional Physics-Informed Neural Networks.
SIAM J. Sci. Comput.
41 (4) (2019)
Pengzhan Jin
,
Lu Lu
,
Yifa Tang
,
George E. Karniadakis
Quantifying the generalization error in deep learning in terms of data distribution and neural network smoothness.
CoRR
(2019)
Dongkun Zhang
,
Lu Lu
,
Ling Guo
,
George Em Karniadakis
Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems.
J. Comput. Phys.
397 (2019)
Lu Lu
,
Yanhui Su
,
George E. Karniadakis
Collapse of Deep and Narrow Neural Nets.
CoRR
(2018)
Yu-Hang Tang
,
Lu Lu
,
He Li
,
Constantinos Evangelinos
,
Leopold Grinberg
,
Vipin Sachdeva
,
George E. Karniadakis
OpenRBC: A Fast Simulator of Red Blood Cells at Protein Resolution.
CoRR
(2017)