​
Login / Signup
Eitan Borgnia
Publication Activity (10 Years)
Years Active: 2020-2023
Publications (10 Years): 15
Top Topics
Saliency Map
Fragile Watermarking
Hard Problems
Recurrent Networks
Top Venues
CoRR
NeurIPS
ICASSP
ICLR
</>
Publications
</>
Yuxin Wen
,
Arpit Bansal
,
Hamid Kazemi
,
Eitan Borgnia
,
Micah Goldblum
,
Jonas Geiping
,
Tom Goldstein
Canary in a Coalmine: Better Membership Inference with Ensembled Adversarial Queries.
ICLR
(2023)
Arpit Bansal
,
Eitan Borgnia
,
Hong-Min Chu
,
Jie Li
,
Hamid Kazemi
,
Furong Huang
,
Micah Goldblum
,
Jonas Geiping
,
Tom Goldstein
Cold Diffusion: Inverting Arbitrary Image Transforms Without Noise.
NeurIPS
(2023)
Roman Levin
,
Manli Shu
,
Eitan Borgnia
,
Furong Huang
,
Micah Goldblum
,
Tom Goldstein
Where do Models go Wrong? Parameter-Space Saliency Maps for Explainability.
NeurIPS
(2022)
Arpit Bansal
,
Avi Schwarzschild
,
Eitan Borgnia
,
Zeyad Emam
,
Furong Huang
,
Micah Goldblum
,
Tom Goldstein
End-to-end Algorithm Synthesis with Recurrent Networks: Extrapolation without Overthinking.
NeurIPS
(2022)
Amin Ghiasi
,
Hamid Kazemi
,
Eitan Borgnia
,
Steven Reich
,
Manli Shu
,
Micah Goldblum
,
Andrew Gordon Wilson
,
Tom Goldstein
What do Vision Transformers Learn? A Visual Exploration.
CoRR
(2022)
Arpit Bansal
,
Eitan Borgnia
,
Hong-Min Chu
,
Jie S. Li
,
Hamid Kazemi
,
Furong Huang
,
Micah Goldblum
,
Jonas Geiping
,
Tom Goldstein
Cold Diffusion: Inverting Arbitrary Image Transforms Without Noise.
CoRR
(2022)
Yuxin Wen
,
Arpit Bansal
,
Hamid Kazemi
,
Eitan Borgnia
,
Micah Goldblum
,
Jonas Geiping
,
Tom Goldstein
Canary in a Coalmine: Better Membership Inference with Ensembled Adversarial Queries.
CoRR
(2022)
Arpit Bansal
,
Avi Schwarzschild
,
Eitan Borgnia
,
Zeyad Emam
,
Furong Huang
,
Micah Goldblum
,
Tom Goldstein
End-to-end Algorithm Synthesis with Recurrent Networks: Logical Extrapolation Without Overthinking.
CoRR
(2022)
Avi Schwarzschild
,
Eitan Borgnia
,
Arjun Gupta
,
Furong Huang
,
Uzi Vishkin
,
Micah Goldblum
,
Tom Goldstein
Can You Learn an Algorithm? Generalizing from Easy to Hard Problems with Recurrent Networks.
NeurIPS
(2021)
Roman Levin
,
Manli Shu
,
Eitan Borgnia
,
Furong Huang
,
Micah Goldblum
,
Tom Goldstein
Where do Models go Wrong? Parameter-Space Saliency Maps for Explainability.
CoRR
(2021)
Avi Schwarzschild
,
Eitan Borgnia
,
Arjun Gupta
,
Arpit Bansal
,
Zeyad Emam
,
Furong Huang
,
Micah Goldblum
,
Tom Goldstein
Datasets for Studying Generalization from Easy to Hard Examples.
CoRR
(2021)
Eitan Borgnia
,
Valeriia Cherepanova
,
Liam Fowl
,
Amin Ghiasi
,
Jonas Geiping
,
Micah Goldblum
,
Tom Goldstein
,
Arjun Gupta
Strong Data Augmentation Sanitizes Poisoning and Backdoor Attacks Without an Accuracy Tradeoff.
ICASSP
(2021)
Avi Schwarzschild
,
Eitan Borgnia
,
Arjun Gupta
,
Furong Huang
,
Uzi Vishkin
,
Micah Goldblum
,
Tom Goldstein
Can You Learn an Algorithm? Generalizing from Easy to Hard Problems with Recurrent Networks.
CoRR
(2021)
Eitan Borgnia
,
Jonas Geiping
,
Valeriia Cherepanova
,
Liam Fowl
,
Arjun Gupta
,
Amin Ghiasi
,
Furong Huang
,
Micah Goldblum
,
Tom Goldstein
DP-InstaHide: Provably Defusing Poisoning and Backdoor Attacks with Differentially Private Data Augmentations.
CoRR
(2021)
Eitan Borgnia
,
Valeriia Cherepanova
,
Liam Fowl
,
Amin Ghiasi
,
Jonas Geiping
,
Micah Goldblum
,
Tom Goldstein
,
Arjun Gupta
Strong Data Augmentation Sanitizes Poisoning and Backdoor Attacks Without an Accuracy Tradeoff.
CoRR
(2020)