Login / Signup
Hong-Min Chu
Publication Activity (10 Years)
Years Active: 2016-2024
Publications (10 Years): 20
Top Topics
Active Learning
Random Forests
Diffusion Models
Learning Experience
Top Venues
CoRR
ICLR
ICDM
Mach. Learn.
</>
Publications
</>
Arpit Bansal
,
Hong-Min Chu
,
Avi Schwarzschild
,
Soumyadip Sengupta
,
Micah Goldblum
,
Jonas Geiping
,
Tom Goldstein
Universal Guidance for Diffusion Models.
ICLR
(2024)
Neel Jain
,
Ping-yeh Chiang
,
Yuxin Wen
,
John Kirchenbauer
,
Hong-Min Chu
,
Gowthami Somepalli
,
Brian R. Bartoldson
,
Bhavya Kailkhura
,
Avi Schwarzschild
,
Aniruddha Saha
,
Micah Goldblum
,
Jonas Geiping
,
Tom Goldstein
NEFTune: Noisy Embeddings Improve Instruction Finetuning.
ICLR
(2024)
Arpit Bansal
,
Hong-Min Chu
,
Avi Schwarzschild
,
Soumyadip Sengupta
,
Micah Goldblum
,
Jonas Geiping
,
Tom Goldstein
Universal Guidance for Diffusion Models.
CVPR Workshops
(2023)
Hong-Min Chu
,
Jonas Geiping
,
Liam H. Fowl
,
Micah Goldblum
,
Tom Goldstein
Panning for Gold in Federated Learning: Targeted Text Extraction under Arbitrarily Large-Scale Aggregation.
ICLR
(2023)
Arpit Bansal
,
Eitan Borgnia
,
Hong-Min Chu
,
Jie Li
,
Hamid Kazemi
,
Furong Huang
,
Micah Goldblum
,
Jonas Geiping
,
Tom Goldstein
Cold Diffusion: Inverting Arbitrary Image Transforms Without Noise.
NeurIPS
(2023)
Arpit Bansal
,
Hong-Min Chu
,
Avi Schwarzschild
,
Soumyadip Sengupta
,
Micah Goldblum
,
Jonas Geiping
,
Tom Goldstein
Universal Guidance for Diffusion Models.
CoRR
(2023)
Neel Jain
,
Ping-yeh Chiang
,
Yuxin Wen
,
John Kirchenbauer
,
Hong-Min Chu
,
Gowthami Somepalli
,
Brian R. Bartoldson
,
Bhavya Kailkhura
,
Avi Schwarzschild
,
Aniruddha Saha
,
Micah Goldblum
,
Jonas Geiping
,
Tom Goldstein
NEFTune: Noisy Embeddings Improve Instruction Finetuning.
CoRR
(2023)
Arpit Bansal
,
Eitan Borgnia
,
Hong-Min Chu
,
Jie S. Li
,
Hamid Kazemi
,
Furong Huang
,
Micah Goldblum
,
Jonas Geiping
,
Tom Goldstein
Cold Diffusion: Inverting Arbitrary Image Transforms Without Noise.
CoRR
(2022)
Renkun Ni
,
Hong-Min Chu
,
Oscar Castañeda
,
Ping-Yeh Chiang
,
Christoph Studer
,
Tom Goldstein
WrapNet: Neural Net Inference with Ultra-Low-Precision Arithmetic.
ICLR
(2021)
Zeyad Ali Sami Emam
,
Hong-Min Chu
,
Ping-Yeh Chiang
,
Wojciech Czaja
,
Richard Leapman
,
Micah Goldblum
,
Tom Goldstein
Active Learning at the ImageNet Scale.
CoRR
(2021)
Renkun Ni
,
Hong-Min Chu
,
Oscar Castañeda
,
Ping-Yeh Chiang
,
Christoph Studer
,
Tom Goldstein
WrapNet: Neural Net Inference with Ultra-Low-Resolution Arithmetic.
CoRR
(2020)
Yao-Yuan Yang
,
Yi-An Lin
,
Hong-Min Chu
,
Hsuan-Tien Lin
Deep Learning with a Rethinking Structure for Multi-label Classification.
ACML
(2019)
Hong-Min Chu
,
Kuan-Hao Huang
,
Hsuan-Tien Lin
Dynamic principal projection for cost-sensitive online multi-label classification.
Mach. Learn.
108 (8-9) (2019)
Yao-Yuan Yang
,
Yi-An Lin
,
Hong-Min Chu
,
Hsuan-Tien Lin
Deep Learning with a Rethinking Structure for Multi-label Classification.
CoRR
(2018)
Yu-Lin Tsou
,
Hong-Min Chu
,
Cong Li
,
Shao-Wen Yang
Robust Distributed Anomaly Detection Using Optimal Weighted One-Class Random Forests.
ICDM
(2018)
Hong-Min Chu
,
Shao-Wen Yang
,
Padmanabhan Pillai
,
Yen-Kuang Chen
Scheduling in Visual Fog Computing: NP-Completeness and Practical Efficient Solutions.
AAAI
(2018)
Hong-Min Chu
,
Chih-Kuan Yeh
,
Yu-Chiang Frank Wang
Deep Generative Models for Weakly-Supervised Multi-Label Classification.
ECCV (2)
(2018)
Hong-Min Chu
,
Kuan-Hao Huang
,
Hsuan-Tien Lin
Dynamic Principal Projection for Cost-Sensitive Online Multi-Label Classification.
CoRR
(2017)
Hong-Min Chu
,
Hsuan-Tien Lin
Can Active Learning Experience Be Transferred?
ICDM
(2016)
Hong-Min Chu
,
Hsuan-Tien Lin
Can Active Learning Experience Be Transferred?
CoRR
(2016)