Login / Signup
PrivateNLP@WSDM
2020
2020
2020
Keyphrases
Publications
2020
Tom Diethe
,
Oluwaseyi Feyisetan
Preserving Privacy in Analyses of Textual Data.
PrivateNLP@WSDM
(2020)
Patricia Thaine
,
Gerald Penn
Perfectly Privacy-Preserving AI What Is It and How Do We Achieve It?
PrivateNLP@WSDM
(2020)
Levi Melnick
,
Hussein Elmessilhy
,
Vassilis Polychronopoulos
,
Gilsinia Lopez
,
Yuancheng Tu
,
Omar Zia Khan
,
Ye-Yi Wang
,
Chris Quirk
Privacy-Aware Personalized Entity Representations for Improved User Understanding.
PrivateNLP@WSDM
(2020)
Patricia Thaine
,
Gerald Penn
Perfectly Privacy-Preserving AI What Is It and How Do We Achieve It?
PrivateNLP@WSDM
(2020)
A. K. M. Nuhil Mehdy
,
Hoda Mehrpouyan
A User-Centric and Sentiment Aware Privacy-Disclosure Detection Framework based on Multi-input Neural Network.
PrivateNLP@WSDM
(2020)
Oluwaseyi Feyisetan
,
Tom Diethe
,
Thomas Drake
Hyperbolic Embeddings for Preserving Privacy and Utility in Text.
PrivateNLP@WSDM
(2020)
Robert Podschwadt
,
Daniel Takabi
Classification of Encrypted Word Embeddings using Recurrent Neural Networks.
PrivateNLP@WSDM
(2020)
Vijayanta Jain
,
Sepideh Ghanavati
Is It Possible to Preserve Privacy in the Age of AI?
PrivateNLP@WSDM
(2020)
Oluwaseyi Feyisetan
,
Borja Balle
,
Tom Diethe
,
Thomas Drake
Calibrating Mechanisms for Privacy Preserving Text Analysis.
PrivateNLP@WSDM
(2020)
Oluwaseyi Feyisetan
,
Borja Balle
Privacy-Preserving Textual Analysis via Calibrated Perturbations.
PrivateNLP@WSDM
(2020)
volume 2573, 2020
Proceedings of the PrivateNLP 2020: Workshop on Privacy in Natural Language Processing - Colocated with WSDM 2020, Houston, USA, Feb 7, 2020.
PrivateNLP@WSDM
2573 (2020)