$\mathcal{H}$-matrix approximability of inverses of FEM matrices for the time-harmonic Maxwell equations.
Markus FaustmannJens Markus MelenkMaryam ParviziPublished in: CoRR (2021)
Keyphrases
- coefficient matrix
- singular value decomposition
- linear systems
- square matrices
- singular values
- matrix representation
- positive definite
- sufficient conditions
- eigenvalues and eigenvectors
- positive semidefinite
- linear complementarity problem
- perturbation theory
- projection matrices
- finite element
- linear algebra
- data matrix
- symmetric positive definite
- rows and columns
- finite element method
- block diagonal
- matrix multiplication
- sparse matrix
- numerical solution
- systems of linear equations
- projection matrix
- low rank matrix
- low rank
- symmetric matrices
- mathematical model
- pseudo inverse
- correlation matrix
- low rank and sparse
- covariance matrix
- distance matrix
- square root
- measurement matrix
- numerical methods
- matrix factorization
- sparse matrices
- totally unimodular
- kernel function
- semidefinite
- linear equations
- experimental data
- covariance matrices
- least squares
- collaborative filtering
- set of linear equations
- approximation algorithms
- binary matrices
- semidefinite programming
- interior point methods
- finite element model
- finite difference
- affinity matrix
- eigendecomposition
- factorization method