Login / Signup
Yongqi Chang
ORCID
Publication Activity (10 Years)
Years Active: 2020-2024
Publications (10 Years): 9
Top Topics
Fault Diagnosis
Top Venues
IEEE Trans. Instrum. Meas.
IECON
Sensors
I2MTC
</>
Publications
</>
Changdong Wang
,
Jingli Yang
,
Huamin Jie
,
Bowen Tian
,
Zhenyu Zhao
,
Yongqi Chang
An uncertainty perception metric network for machinery fault diagnosis under limited noisy source domain and scarce noisy unknown domain.
Adv. Eng. Informatics
62 (2024)
Yongqi Chang
,
Xin Zhang
,
Yi Shen
,
Shuzhi Song
,
Qinghua Song
,
Jiazhong Cui
,
Huamin Jie
,
Zhenyu Zhao
Rail Crack Detection Using Optimal Local Mean Decomposition and Cepstral Information Coefficient Based on Electromagnetic Acoustic Emission Technology.
IEEE Trans. Instrum. Meas.
73 (2024)
Changdong Wang
,
Bowen Tian
,
Jingli Yang
,
Huamin Jie
,
Yongqi Chang
,
Zhenyu Zhao
Neural-transformer: A brain-inspired lightweight mechanical fault diagnosis method under noise.
Reliab. Eng. Syst. Saf.
251 (2024)
Shuzhi Song
,
Xin Zhang
,
Yongqi Chang
,
Yi Shen
An Improved Structural Health Monitoring Method Utilizing Sparse Representation for Acoustic Emission Signals in Rails.
IEEE Trans. Instrum. Meas.
72 (2023)
Huamin Jie
,
Zhenyu Zhao
,
Fei Fan
,
Yongqi Chang
,
Firman Sasongko
,
Amit Kumar Gupta
,
Kye Yak See
Characterization and Modeling of Single-Phase Common-Mode Chokes via Finite-Element Analysis.
IECON
(2023)
Zhen Tao
,
Zhenyu Zhao
,
Fei Fan
,
Huamin Jie
,
Yongqi Chang
,
Kye Yak See
High Precision SoC Estimation of LiFePO4 Blade Batteries Using Improved OCV-Based PNGV Model.
IECON
(2023)
Jingli Yang
,
Shuangyan Yin
,
Yongqi Chang
,
Tianyu Gao
,
Cheng Yang
An Efficient Method for Monitoring Degradation and Predicting the Remaining Useful Life of Mechanical Rotating Components.
IEEE Trans. Instrum. Meas.
70 (2021)
Jingli Yang
,
Yongqi Chang
,
Cheng Yang
,
Yang Liu
A Fault Prediction Method of Quartz Flexible Accelerometers Based on AGO-RVM.
I2MTC
(2020)
Jingli Yang
,
Shuangyan Yin
,
Yongqi Chang
,
Tianyu Gao
A Fault Diagnosis Method of Rotating Machinery Based on One-Dimensional, Self-Normalizing Convolutional Neural Networks.
Sensors
20 (14) (2020)