​
Login / Signup
Yi Ding
ORCID
Publication Activity (10 Years)
Years Active: 2014-2023
Publications (10 Years): 19
Top Topics
Computer Systems
Top Venues
CoRR
AAAI
AISTATS
Proc. ACM Program. Lang.
</>
Publications
</>
Alex Renda
,
Yi Ding
,
Michael Carbin
Turaco: Complexity-Guided Data Sampling for Training Neural Surrogates of Programs.
Proc. ACM Program. Lang.
7 (OOPSLA2) (2023)
Gokul Subramanian Ravi
,
Pranav Gokhale
,
Yi Ding
,
William M. Kirby
,
Kaitlin N. Smith
,
Jonathan M. Baker
,
Peter J. Love
,
Henry Hoffmann
,
Kenneth R. Brown
,
Frederic T. Chong
CAFQA: A Classical Simulation Bootstrap for Variational Quantum Algorithms.
ASPLOS (1)
(2023)
Alex Renda
,
Yi Ding
,
Michael Carbin
Turaco: Complexity-Guided Data Sampling for Training Neural Surrogates of Programs.
CoRR
(2023)
Gokul Subramanian Ravi
,
Pranav Gokhale
,
Yi Ding
,
William M. Kirby
,
Kaitlin N. Smith
,
Jonathan M. Baker
,
Peter J. Love
,
Henry Hoffmann
,
Kenneth R. Brown
,
Frederic T. Chong
CAFQA: Clifford Ansatz For Quantum Accuracy.
CoRR
(2022)
Yi Ding
,
Avinash Rao
,
Hyebin Song
,
Rebecca Willett
,
Henry Hoffmann
NURD: Negative-Unlabeled Learning for Online Datacenter Straggler Prediction.
CoRR
(2022)
Yi Ding
,
Aijia Gao
,
Thibaud Ryden
,
Kaushik Mitra
,
Sukumar Kalmanje
,
Yanai Golany
,
Michael Carbin
,
Henry Hoffmann
Acela: Predictable Datacenter-level Maintenance Job Scheduling.
CoRR
(2022)
Yi Ding
,
Alex Renda
,
Ahsan Pervaiz
,
Michael Carbin
,
Henry Hoffmann
Cello: Efficient Computer Systems Optimization with Predictive Early Termination and Censored Regression.
CoRR
(2022)
Hyunji Kim
,
Ahsan Pervaiz
,
Henry Hoffmann
,
Michael Carbin
,
Yi Ding
SCOPE: Safe Exploration for Dynamic Computer Systems Optimization.
CoRR
(2022)
Yi Ding
,
Avinash Rao
,
Hyebin Song
,
Rebecca Willett
,
Henry Hoffmann
NURD: Negative-Unlabeled Learning for Online Datacenter Straggler Prediction.
MLSys
(2022)
Alex Renda
,
Yi Ding
,
Michael Carbin
Programming with Neural Surrogates of Programs.
CoRR
(2021)
Yi Ding
,
Ahsan Pervaiz
,
Michael Carbin
,
Henry Hoffmann
Generalizable and interpretable learning for configuration extrapolation.
ESEC/SIGSOFT FSE
(2021)
Alex Renda
,
Yi Ding
,
Michael Carbin
Programming with neural surrogates of programs.
Onward!
(2021)
Ming Gao
,
Yi Ding
,
Bryon Aragam
A polynomial-time algorithm for learning nonparametric causal graphs.
CoRR
(2020)
Yi Ding
,
Panos Toulis
Dynamical Systems Theory for Causal Inference with Application to Synthetic Control Methods.
AISTATS
(2020)
Ming Gao
,
Yi Ding
,
Bryon Aragam
A polynomial-time algorithm for learning nonparametric causal graphs.
NeurIPS
(2020)
Yi Ding
,
Nikita Mishra
,
Henry Hoffmann
Generative and multi-phase learning for computer systems optimization.
ISCA
(2019)
Yi Ding
,
Risi Kondor
,
Jonathan Eskreis-Winkler
Multiresolution Kernel Approximation for Gaussian Process Regression.
NIPS
(2017)
Yi Ding
,
Chenghao Liu
,
Peilin Zhao
,
Steven C. H. Hoi
Large Scale Kernel Methods for Online AUC Maximization.
ICDM
(2017)
Yi Ding
,
Peilin Zhao
,
Steven C. H. Hoi
,
Yew-Soon Ong
Adaptive Subgradient Methods for Online AUC Maximization.
CoRR
(2016)
Yi Ding
,
Peilin Zhao
,
Steven C. H. Hoi
,
Yew-Soon Ong
An Adaptive Gradient Method for Online AUC Maximization.
AAAI
(2015)
Pengcheng Wu
,
Yi Ding
,
Peilin Zhao
,
Chunyan Miao
,
Steven C. H. Hoi
Learning Relative Similarity by Stochastic Dual Coordinate Ascent.
AAAI
(2014)