Login / Signup
Vembu Shanthi
Publication Activity (10 Years)
Years Active: 2020-2024
Publications (10 Years): 9
Top Topics
Numerical Solution
Diffusion Processes
Boundary Conditions
Higher Order
Top Venues
J. Comput. Appl. Math.
Comput. Math. Appl.
Int. J. Comput. Sci. Math.
CoRR
</>
Publications
</>
Ram Shiromani
,
Niall Madden
,
Vembu Shanthi
A finite difference scheme for two-dimensional singularly perturbed convection-diffusion problem with discontinuous source term.
CoRR
(2024)
Ajay Singh Rathore
,
Vembu Shanthi
A numerical method for a system of singularly perturbed Fredholm integro-differential reaction-diffusion equation.
J. Comput. Appl. Math.
437 (2024)
Carmelo Clavero
,
Ram Shiromani
,
Vembu Shanthi
A numerical approach for a two-parameter singularly perturbed weakly-coupled system of 2-D elliptic convection-reaction-diffusion PDEs.
J. Comput. Appl. Math.
436 (2024)
Ajay Singh Rathore
,
Vembu Shanthi
A numerical solution of singularly perturbed Fredholm integro-differential equation with discontinuous source term.
J. Comput. Appl. Math.
446 (2024)
Ram Shiromani
,
Vembu Shanthi
,
Higinio Ramos
A computational method for a two-parameter singularly perturbed elliptic problem with boundary and interior layers.
Math. Comput. Simul.
206 (2023)
Ram Shiromani
,
Vembu Shanthi
,
Pratibhamoy Das
A higher order hybrid-numerical approximation for a class of singularly perturbed two-dimensional convection-diffusion elliptic problem with non-smooth convection and source terms.
Comput. Math. Appl.
142 (2023)
Carmelo Clavero
,
Ram Shiromani
,
Vembu Shanthi
Numerical solution of singularly perturbed 2-D convection-diffusion elliptic interface PDEs with Robin-type boundary conditions.
Comput. Math. Appl.
140 (2023)
Pathan Mahabub Basha
,
Vembu Shanthi
A parameter robust computational method for a weakly coupled system of singularly perturbed convection-diffusion boundary value problem with discontinuous source terms.
Int. J. Comput. Sci. Math.
14 (1) (2021)
Pathan Mahabub Basha
,
Vembu Shanthi
A robust second order numerical method for a weakly coupled system of singularly perturbed reaction-diffusion problem with discontinuous source term.
Int. J. Comput. Sci. Math.
11 (1) (2020)