Login / Signup
Pratibhamoy Das
ORCID
Publication Activity (10 Years)
Years Active: 2014-2023
Publications (10 Years): 10
Top Topics
Mesh Generation
Differential Equations
Boundary Value Problem
Convergence Analysis
Top Venues
J. Comput. Appl. Math.
Comput. Math. Appl.
Int. J. Comput. Math.
Comput. Math. Methods
</>
Publications
</>
Ram Shiromani
,
Vembu Shanthi
,
Pratibhamoy Das
A higher order hybrid-numerical approximation for a class of singularly perturbed two-dimensional convection-diffusion elliptic problem with non-smooth convection and source terms.
Comput. Math. Appl.
142 (2023)
Sudarshan Santra
,
Jugal Mohapatra
,
Pratibhamoy Das
,
Debajyoti Choudhuri
Higher order approximations for fractional order integro-parabolic partial differential equations on an adaptive mesh with error analysis.
Comput. Math. Appl.
150 (2023)
Deepti Shakti
,
Jugal Mohapatra
,
Pratibhamoy Das
,
Jesús Vigo-Aguiar
A moving mesh refinement based optimal accurate uniformly convergent computational method for a parabolic system of boundary layer originated reaction-diffusion problems with arbitrary small diffusion terms.
J. Comput. Appl. Math.
404 (2022)
Pratibhamoy Das
,
Subrata Rana
,
Higinio Ramos
On the approximate solutions of a class of fractional order nonlinear Volterra integro-differential initial value problems and boundary value problems of first kind and their convergence analysis.
J. Comput. Appl. Math.
404 (2022)
Pratibhamoy Das
,
Subrata Rana
,
Higinio Ramos
A perturbation-based approach for solving fractional-order Volterra-Fredholm integro differential equations and its convergence analysis.
Int. J. Comput. Math.
97 (10) (2020)
Pratibhamoy Das
,
Jesús Vigo-Aguiar
Parameter uniform optimal order numerical approximation of a class of singularly perturbed system of reaction diffusion problems involving a small perturbation parameter.
J. Comput. Appl. Math.
354 (2019)
Pratibhamoy Das
,
Subrata Rana
,
Higinio Ramos
Homotopy perturbation method for solving Caputo-type fractional-order Volterra-Fredholm integro-differential equations.
Comput. Math. Methods
1 (5) (2019)
Pratibhamoy Das
An a posteriori based convergence analysis for a nonlinear singularly perturbed system of delay differential equations on an adaptive mesh.
Numer. Algorithms
81 (2) (2019)
Pratibhamoy Das
,
Srinivasan Natesan
Adaptive mesh generation for singularly perturbed fourth-order ordinary differential equations.
Int. J. Comput. Math.
92 (3) (2015)
Pratibhamoy Das
Comparison of a priori and a posteriori meshes for singularly perturbed nonlinear parameterized problems.
J. Comput. Appl. Math.
290 (2015)
Pratibhamoy Das
,
Srinivasan Natesan
Optimal error estimate using mesh equidistribution technique for singularly perturbed system of reaction-diffusion boundary-value problems.
Appl. Math. Comput.
249 (2014)