Login / Signup
Thijs Vogels
ORCID
Publication Activity (10 Years)
Years Active: 2015-2024
Publications (10 Years): 21
Top Topics
Monte Carlo
Moving Average
Deep Learning
Heterogeneous Data
Top Venues
CoRR
NeurIPS
ACM Trans. Graph.
WISE (1)
</>
Publications
</>
Daniel Morales-Brotons
,
Thijs Vogels
,
Hadrien Hendrikx
Exponential Moving Average of Weights in Deep Learning: Dynamics and Benefits.
Trans. Mach. Learn. Res.
2024 (2024)
Thijs Vogels
,
Hadrien Hendrikx
,
Martin Jaggi
Beyond spectral gap (extended): The role of the topology in decentralized learning.
CoRR
(2023)
Vinitra Swamy
,
Malika Satayeva
,
Jibril Frej
,
Thierry Bossy
,
Thijs Vogels
,
Martin Jaggi
,
Tanja Käser
,
Mary-Anne Hartley
MultiMoDN - Multimodal, Multi-Task, Interpretable Modular Networks.
NeurIPS
(2023)
Ashok Vardhan Makkuva
,
Marco Bondaschi
,
Thijs Vogels
,
Martin Jaggi
,
Hyeji Kim
,
Michael C. Gastpar
LASER: Linear Compression in Wireless Distributed Optimization.
CoRR
(2023)
Vinitra Swamy
,
Malika Satayeva
,
Jibril Frej
,
Thierry Bossy
,
Thijs Vogels
,
Martin Jaggi
,
Tanja Käser
,
Mary-Anne Hartley
MultiModN- Multimodal, Multi-Task, Interpretable Modular Networks.
CoRR
(2023)
Thijs Vogels
,
Hadrien Hendrikx
,
Martin Jaggi
Beyond spectral gap: The role of the topology in decentralized learning.
CoRR
(2022)
Cécile Trottet
,
Thijs Vogels
,
Martin Jaggi
,
Mary-Anne Hartley
Modular Clinical Decision Support Networks (MoDN) - Updatable, Interpretable, and Portable Predictions for Evolving Clinical Environments.
CoRR
(2022)
Thijs Vogels
,
Hadrien Hendrikx
,
Martin Jaggi
Beyond spectral gap: the role of the topology in decentralized learning.
NeurIPS
(2022)
Xianyao Zhang
,
Marco Manzi
,
Thijs Vogels
,
Henrik Dahlberg
,
Markus H. Gross
,
Marios Papas
Deep Compositional Denoising for High-quality Monte Carlo Rendering.
Comput. Graph. Forum
40 (4) (2021)
Thijs Vogels
,
Lie He
,
Anastasia Koloskova
,
Tao Lin
,
Sai Praneeth Karimireddy
,
Sebastian U. Stich
,
Martin Jaggi
RelaySum for Decentralized Deep Learning on Heterogeneous Data.
CoRR
(2021)
Thijs Vogels
,
Lie He
,
Anastasia Koloskova
,
Sai Praneeth Karimireddy
,
Tao Lin
,
Sebastian U. Stich
,
Martin Jaggi
RelaySum for Decentralized Deep Learning on Heterogeneous Data.
NeurIPS
(2021)
Thijs Vogels
,
Sai Praneeth Karimireddy
,
Martin Jaggi
Practical Low-Rank Communication Compression in Decentralized Deep Learning.
NeurIPS
(2020)
Prabhu Teja Sivaprasad
,
Florian Mai
,
Thijs Vogels
,
Martin Jaggi
,
François Fleuret
Optimizer Benchmarking Needs to Account for Hyperparameter Tuning.
ICML
(2020)
Thijs Vogels
,
Sai Praneeth Karimireddy
,
Martin Jaggi
PowerGossip: Practical Low-Rank Communication Compression in Decentralized Deep Learning.
CoRR
(2020)
Thijs Vogels
,
Sai Praneeth Karimireddy
,
Martin Jaggi
PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization.
NeurIPS
(2019)
Prabhu Teja Sivaprasad
,
Florian Mai
,
Thijs Vogels
,
Martin Jaggi
,
François Fleuret
On the Tunability of Optimizers in Deep Learning.
CoRR
(2019)
Thijs Vogels
,
Sai Praneeth Karimireddy
,
Martin Jaggi
PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization.
CoRR
(2019)
Thijs Vogels
,
Octavian-Eugen Ganea
,
Carsten Eickhoff
Web2Text: Deep Structured Boilerplate Removal.
ECIR
(2018)
Thijs Vogels
,
Fabrice Rousselle
,
Brian McWilliams
,
Gerhard Röthlin
,
Alex Harvill
,
David Adler
,
Mark Meyer
,
Jan Novák
Denoising with kernel prediction and asymmetric loss functions.
ACM Trans. Graph.
37 (4) (2018)
Thijs Vogels
,
Octavian-Eugen Ganea
,
Carsten Eickhoff
Web2Text: Deep Structured Boilerplate Removal.
CoRR
(2018)
Steve Bako
,
Thijs Vogels
,
Brian McWilliams
,
Mark Meyer
,
Jan Novák
,
Alex Harvill
,
Pradeep Sen
,
Tony DeRose
,
Fabrice Rousselle
Kernel-predicting convolutional networks for denoising Monte Carlo renderings.
ACM Trans. Graph.
36 (4) (2017)
Cristina Kadar
,
Grammatiki Zanni
,
Thijs Vogels
,
Irena Pletikosa Cvijikj
Towards a Burglary Risk Profiler Using Demographic and Spatial Factors.
WISE (1)
(2015)