Login / Signup
Stephan Rasp
Publication Activity (10 Years)
Years Active: 2018-2023
Publications (10 Years): 11
Top Topics
Baseline Models
Deep Learning
Weather Forecasts
Invariance Properties
Top Venues
CoRR
AISTATS
IGARSS
</>
Publications
</>
Dmitrii Kochkov
,
Janni Yuval
,
Ian Langmore
,
Peter Norgaard
,
Jamie A. Smith
,
Griffin Mooers
,
James Lottes
,
Stephan Rasp
,
Peter D. Düben
,
Milan Klöwer
,
Sam Hatfield
,
Peter W. Battaglia
,
Alvaro Sanchez-Gonzalez
,
Matthew Willson
,
Michael P. Brenner
,
Stephan Hoyer
Neural General Circulation Models.
CoRR
(2023)
Ilan Price
,
Stephan Rasp
Increasing the accuracy and resolution of precipitation forecasts using deep generative models.
CoRR
(2022)
Ilan Price
,
Stephan Rasp
Increasing the accuracy and resolution of precipitation forecasts using deep generative models.
AISTATS
(2022)
Sagar Garg
,
Stephan Rasp
,
Nils Thuerey
WeatherBench Probability: A benchmark dataset for probabilistic medium-range weather forecasting along with deep learning baseline models.
CoRR
(2022)
Tom Beucler
,
Michael S. Pritchard
,
Janni Yuval
,
Ankitesh Gupta
,
Liran Peng
,
Stephan Rasp
,
Fiaz Ahmed
,
Paul A. O'Gorman
,
J. David Neelin
,
Nicholas J. Lutsko
,
Pierre Gentine
Climate-Invariant Machine Learning.
CoRR
(2021)
Tom Beucler
,
Michael S. Pritchard
,
Pierre Gentine
,
Stephan Rasp
Towards Physically-Consistent, Data-Driven Models of Convection.
IGARSS
(2020)
Tom Beucler
,
Michael S. Pritchard
,
Pierre Gentine
,
Stephan Rasp
Towards Physically-consistent, Data-driven Models of Convection.
CoRR
(2020)
Stephan Rasp
,
Hauke Schulz
,
Sandrine Bony
,
Bjorn Stevens
Combining crowd-sourcing and deep learning to understand meso-scale organization of shallow convection.
CoRR
(2019)
Tom Beucler
,
Stephan Rasp
,
Michael S. Pritchard
,
Pierre Gentine
Achieving Conservation of Energy in Neural Network Emulators for Climate Modeling.
CoRR
(2019)
Stephan Rasp
,
Sebastian Lerch
Neural networks for post-processing ensemble weather forecasts.
CoRR
(2018)
Stephan Rasp
,
Michael S. Pritchard
,
Pierre Gentine
Deep learning to represent sub-grid processes in climate models.
CoRR
(2018)