Login / Signup
S. T. John
Publication Activity (10 Years)
Years Active: 2018-2023
Publications (10 Years): 22
Top Topics
Gaussian Process
Top Venues
CoRR
ICML
Bioinform.
AISTATS
</>
Publications
</>
Caglar Hizli
,
S. T. John
,
Anne Tuulikki Juuti
,
Tuure Tapani Saarinen
,
Kirsi Hannele Pietiläinen
,
Pekka Marttinen
Causal Modeling of Policy Interventions From Treatment-Outcome Sequences.
ICML
(2023)
Rui Li
,
S. T. John
,
Arno Solin
Improving Hyperparameter Learning under Approximate Inference in Gaussian Process Models.
ICML
(2023)
Kenza Tazi
,
Jihao Andreas Lin
,
Ross Viljoen
,
Alex Gardner
,
S. T. John
,
Hong Ge
,
Richard E. Turner
Beyond Intuition, a Framework for Applying GPs to Real-World Data.
CoRR
(2023)
Paul E. Chang
,
Prakhar Verma
,
S. T. John
,
Arno Solin
,
Mohammad Emtiyaz Khan
Memory-Based Dual Gaussian Processes for Sequential Learning.
CoRR
(2023)
Paul Edmund Chang
,
Prakhar Verma
,
S. T. John
,
Arno Solin
,
Mohammad Emtiyaz Khan
Memory-Based Dual Gaussian Processes for Sequential Learning.
ICML
(2023)
Julien Martinelli
,
Ayush Bharti
,
S. T. John
,
Armi Tiihonen
,
Sabina Sloman
,
Louis Filstroff
,
Samuel Kaski
Cost-aware learning of relevant contextual variables within Bayesian optimization.
CoRR
(2023)
Çaglar Hizli
,
S. T. John
,
Anne Juuti
,
Tuure Saarinen
,
Kirsi Pietiläinen
,
Pekka Marttinen
Joint Non-parametric Point Process model for Treatments and Outcomes: Counterfactual Time-series Prediction Under Policy Interventions.
CoRR
(2022)
Alexander Nikitin
,
S. T. John
,
Arno Solin
,
Samuel Kaski
Non-separable Spatio-temporal Graph Kernels via SPDEs.
CoRR
(2021)
Vincent Dutordoir
,
Hugh Salimbeni
,
Eric Hambro
,
John McLeod
,
Felix Leibfried
,
Artem Artemev
,
Mark van der Wilk
,
James Hensman
,
Marc Peter Deisenroth
,
S. T. John
GPflux: A Library for Deep Gaussian Processes.
CoRR
(2021)
Nuha Bintayyash
,
Sokratia Georgaka
,
S. T. John
,
Sumon Ahmed
,
Alexis Boukouvalas
,
James Hensman
,
Magnus Rattray
Non-parametric modelling of temporal and spatial counts data from RNA-seq experiments.
Bioinform.
37 (21) (2021)
Ayman Boustati
,
Sattar Vakili
,
James Hensman
,
S. T. John
Amortized variance reduction for doubly stochastic objectives.
CoRR
(2020)
Felix Leibfried
,
Vincent Dutordoir
,
S. T. John
,
Nicolas Durrande
A Tutorial on Sparse Gaussian Processes and Variational Inference.
CoRR
(2020)
Ayman Boustati
,
Sattar Vakili
,
James Hensman
,
S. T. John
Amortized variance reduction for doubly stochastic objective.
UAI
(2020)
Mark van der Wilk
,
Vincent Dutordoir
,
S. T. John
,
Artem Artemev
,
Vincent Adam
,
James Hensman
A Framework for Interdomain and Multioutput Gaussian Processes.
CoRR
(2020)
Andrés F. López-Lopera
,
S. T. John
,
Nicolas Durrande
Gaussian Process Modulated Cox Processes under Linear Inequality Constraints.
CoRR
(2019)
Andrés F. López-Lopera
,
S. T. John
,
Nicolas Durrande
Gaussian Process Modulated Cox Processes under Linear Inequality Constraints.
AISTATS
(2019)
Mark van der Wilk
,
S. T. John
,
Artem Artemev
,
James Hensman
Variational Gaussian Process Models without Matrix Inverses.
AABI
(2019)
Mark van der Wilk
,
Matthias Bauer
,
S. T. John
,
James Hensman
Learning Invariances using the Marginal Likelihood.
NeurIPS
(2018)
S. T. John
,
James Hensman
Large-Scale Cox Process Inference using Variational Fourier Features.
CoRR
(2018)
Mark van der Wilk
,
Matthias Bauer
,
S. T. John
,
James Hensman
Learning Invariances using the Marginal Likelihood.
CoRR
(2018)
Vincent Adam
,
Nicolas Durrande
,
S. T. John
Scalable GAM using sparse variational Gaussian processes.
CoRR
(2018)
S. T. John
,
James Hensman
Large-Scale Cox Process Inference using Variational Fourier Features.
ICML
(2018)