Login / Signup
Pedro Casas
ORCID
Publication Activity (10 Years)
Years Active: 2007-2024
Publications (10 Years): 110
Top Topics
Network Traffic
Anomaly Detection
Cellular Networks
E Learning
Top Venues
TMA
CNSM
IEEE Trans. Netw. Serv. Manag.
IWCMC
</>
Publications
</>
Michael Seufert
,
Katharina Dietz
,
Nikolas Wehner
,
Stefan Geißler
,
Joshua Schüler
,
Manuel Wolz
,
Andreas Hotho
,
Pedro Casas
,
Tobias Hoßfeld
,
Anja Feldmann
Marina: Realizing ML-Driven Real-Time Network Traffic Monitoring at Terabit Scale.
IEEE Trans. Netw. Serv. Manag.
21 (3) (2024)
B. Brandino
,
E. Grampin
,
Katharina Dietz
,
Nikolas Wehner
,
Michael Seufert
,
Tobias Hoßfeld
,
Pedro Casas
HALIDS: a Hardware-Assisted Machine Learning IDS for in-Network Monitoring.
TMA
(2024)
Lucas Torrealba Aravena
,
Pedro Casas
,
Javier Bustos-Jiménez
,
Mislav Findrik
More than Words is What you Need - Detecting DGA and Phishing Domains with Dom2Vec Word Embeddings.
TMA
(2024)
Gastón García González
,
Pedro Casas
,
Emilio Martínez
,
Alicia Fernández
Timeless Foundations: Exploring DC-VAEs as Foundation Models for Time Series Analysis.
TMA
(2024)
Gastón García González
,
Sergio Martinez Tagliafico
,
Alicia Fernández
,
Gabriel Gómez Sena
,
José Acuña
,
Pedro Casas
One Model to Find Them All Deep Learning for Multivariate Time-Series Anomaly Detection in Mobile Network Data.
IEEE Trans. Netw. Serv. Manag.
21 (2) (2024)
Clemens Heistracher
,
Pedro Casas
,
Stefan Stricker
,
Axel Weißenfeld
,
Daniel Schall
,
Jana Kemnitz
Should I Sample it or Not? Improving Quality Assurance Efficiency Through Smart Active Sampling.
IECON
(2023)
Gastón García González
,
Pedro Casas
,
Alicia Fernández
Fake it till you Detect it: Continual Anomaly Detection in Multivariate Time-Series using Generative AI.
EuroS&P Workshops
(2023)
Lucas Torrealba Aravena
,
Pedro Casas
,
Javier Bustos-Jiménez
,
Germán Capdehourat
,
M. Findrik
Not all DGAs are Born the Same - Improving Lexicographic based Detection of DGA Domains through AI/ML.
TMA
(2023)
Gastón García González
,
Pedro Casas
,
Alicia Fernández
Deep Generative Replay for Multivariate Time-Series Monitoring with Variational Autoencoders.
TMA
(2023)
Lucas Torrealba Aravena
,
Pedro Casas
,
Javier Bustos-Jiménez
,
Germán Capdehourat
,
M. Findrik
Phish Me If You Can - Lexicographic Analysis and Machine Learning for Phishing Websites Detection with PHISHWEB.
NetSoft
(2023)
Lucas Torrealba Aravena
,
Pedro Casas
,
Javier Bustos-Jiménez
,
Germán Capdehourat
,
M. Findrik
Dom2Vec - Detecting DGA Domains Through Word Embeddings and AI/ML-Driven Lexicographic Analysis.
CNSM
(2023)
Martín Randall
,
Pablo Belzarena
,
Federico Larroca
,
Pedro Casas
GROWS: improving decentralized resource allocation in wireless networks through graph neural networks.
GNNet@CoNEXT
(2022)
Gastón García González
,
Sergio Martinez Tagliafico
,
Alicia Fernández
,
Gabriel Gómez
,
José Acuña
,
Pedro Casas
DC-VAE, Fine-grained Anomaly Detection in Multivariate Time-Series with Dilated Convolutions and Variational Auto Encoders.
EuroS&P Workshops
(2022)
Gastón García González
,
Pedro Casas
,
Alicia Fernández
,
Gabriel Gómez
Steps towards continual learning in multivariate time-series anomaly detection using variational autoencoders.
IMC
(2022)
Pedro Casas
,
Sarah Wassermann
,
Michael Seufert
,
Nikolas Wehner
,
Olivia Dinica
,
Tobias Hossfeld
X-Ray Goggles for the ISP: Improving in-Network Web and App QoE Monitoring with Deep Learning.
TMA
(2022)
Martín Randall
,
Pablo Belzarena
,
Federico Larroca
,
Pedro Casas
Deep Reinforcement Learning and Graph Neural Networks for Efficient Resource Allocation in 5G Networks.
LATINCOM
(2022)
Pedro Casas
,
Michael Seufert
,
Sarah Wassermann
,
Bruno Gardlo
,
Nikolas Wehner
,
Raimund Schatz
DeepCrypt - Deep Learning for QoE Monitoring and Fingerprinting of User Actions in Adaptive Video Streaming.
NetSoft
(2022)
Clemens Heistracher
,
Stefan Stricker
,
Pedro Casas
,
Daniel Schall
,
Jana Kemnitz
Smart Active Sampling to enhance Quality Assurance Efficiency.
CoRR
(2022)
Pedro Casas
,
Nikolas Wehner
,
Sarah Wassermann
,
Michael Seufert
Fingerprinting Web Pages and Smartphone Apps from Encrypted Network Traffic with WebScanner.
CloudNet
(2022)
Pedro Casas
,
Sarah Wassermann
,
Nikolas Wehner
,
Michael Seufert
,
Tobias Hossfeld
Not all Web Pages are Born the Same Content Tailored Learning for Web QoE Inference.
M&N
(2022)
Lucas Torrealba Aravena
,
Javier Bustos-Jiménez
,
Pedro Casas
: a progressive, multi-layered system for phishing websites detection.
IMC
(2022)
Nikolas Wehner
,
Michael Seufert
,
Joshua Schüler
,
Pedro Casas
,
Tobias Hoßfeld
How are your Apps Doing? QoE Inference and Analysis in Mobile Devices.
CNSM
(2021)
Gastón García González
,
Pedro Casas
,
Alicia Fernández
,
Gabriel Gómez
On the Usage of Generative Models for Network Anomaly Detection in Multivariate Time-Series.
SIGMETRICS Perform. Evaluation Rev.
48 (4) (2021)
Nikolas Wehner
,
Michael Seufert
,
Joshua Schuler
,
Sarah Wassermann
,
Pedro Casas
,
Tobias Hossfeld
Improving Web QoE Monitoring for Encrypted Network Traffic through Time Series Modeling.
SIGMETRICS Perform. Evaluation Rev.
48 (4) (2021)
Luis Roberto Jiménez
,
Marta Solera Delgado
,
Matías Toril
,
Carolina Gijón
,
Pedro Casas
Content Matters: Clustering Web Pages for QoE Analysis With WebCLUST.
IEEE Access
9 (2021)
Pedro Casas
,
Matteo Romiti
,
Peter Holzer
,
Sami Ben Mariem
,
Benoit Donnet
,
Bernhard Haslhofer
Where is the Light(ning) in the Taproot Dawn? Unveiling the Bitcoin Lightning (IP) Network.
CloudNet
(2021)
Pedro Casas
,
Sarah Wassermann
,
Nikolas Wehner
,
Michael Seufert
,
Joshua Schüler
,
Tobias Hossfeld
Mobile Web and App QoE Monitoring for ISPs - from Encrypted Traffic to Speed Index through Machine Learning.
WMNC
(2021)
Sarah Wassermann
,
Thibaut Cuvelier
,
Pavol Mulinka
,
Pedro Casas
Adaptive and Reinforcement Learning Approaches for Online Network Monitoring and Analysis.
IEEE Trans. Netw. Serv. Manag.
18 (2) (2021)
Nikolas Wehner
,
Michael Seufert
,
Viktoria Wieser
,
Pedro Casas
,
Germán Capdehourat
Quality that Matters: QoE Monitoring in Education Service Provider (ESP) Networks.
IM
(2021)
Andrea Morichetta
,
Pedro Casas
,
Marco Mellia
EXPLAIN-IT: Towards Explainable AI for Unsupervised Network Traffic Analysis.
CoRR
(2020)
Sarah Wassermann
,
Thibaut Cuvelier
,
Pedro Casas
RAL: reinforcement active learning for network traffic monitoring and analysis.
SIGCOMM Posters and Demos
(2020)
Gonzalo Marín
,
Pedro Casas
,
Germán Capdehourat
DeepMAL - Deep Learning Models for Malware Traffic Detection and Classification.
CoRR
(2020)
Pavol Mulinka
,
Pedro Casas
,
Kensuke Fukuda
,
Lukas Kencl
HUMAN - Hierarchical Clustering for Unsupervised Anomaly Detection & Interpretation.
NOF
(2020)
Sami Ben Mariem
,
Pedro Casas
,
Matteo Romiti
,
Benoit Donnet
,
Rainer Stütz
,
Bernhard Haslhofer
All that Glitters is not Bitcoin - Unveiling the Centralized Nature of the BTC (IP) Network.
CoRR
(2020)
Gastón García González
,
Pedro Casas
,
Alicia Fernández
,
Gabriel Gómez
Network anomaly detection with net-GAN, a generative adversarial network for analysis of multivariate time-series.
SIGCOMM Posters and Demos
(2020)
Alessandro D'Alconzo
,
Idilio Drago
,
Andrea Morichetta
,
Marco Mellia
,
Pedro Casas
A Survey on Big Data for Network Traffic Monitoring and Analysis.
CoRR
(2020)
Sarah Wassermann
,
Michael Seufert
,
Pedro Casas
,
Li Gang
,
Kuang Li
ViCrypt to the Rescue: Real-Time, Machine-Learning-Driven Video-QoE Monitoring for Encrypted Streaming Traffic.
IEEE Trans. Netw. Serv. Manag.
17 (4) (2020)
Michael Seufert
,
Nikolas Wehner
,
Viktoria Wieser
,
Pedro Casas
,
Germán Capdehourat
Mind the (QoE) Gap: On the Incompatibility of Web and Video QoE Models in the Wild.
CNSM
(2020)
Tobias Hoßfeld
,
Stefan Wunderer
,
André Beyer
,
Andrew Hall
,
Anika Schwind
,
Christian Gassner
,
Fabrice Guillemin
,
Florian Wamser
,
Krzysztof Wascinski
,
Matthias Hirth
,
Michael Seufert
,
Pedro Casas
,
Phuoc Tran-Gia
,
Werner Robitza
,
Wojciech Wascinski
,
Zied Ben-Houidi
White Paper on Crowdsourced Network and QoE Measurements - Definitions, Use Cases and Challenges.
CoRR
(2020)
Pavol Mulinka
,
Kensuke Fukuda
,
Pedro Casas
,
Lukas Kencl
WhatsThat? On the Usage of Hierarchical Clustering for Unsupervised Detection & Interpretation of Network Attacks.
EuroS&P Workshops
(2020)
Pedro Casas
Two Decades of AI4NETS-AI/ML for Data Networks: Challenges & Research Directions.
CoRR
(2020)
Pedro Casas
Two Decades of AI4NETS - AI/ML for Data Networks: Challenges & Research Directions.
NOMS
(2020)
Sarah Wassermann
,
Pedro Casas
,
Michael Seufert
,
Nikolas Wehner
,
Joshua Schüler
,
Tobias Hossfeld
How good is your mobile (web) surfing?: speed index inference from encrypted traffic.
SIGCOMM Posters and Demos
(2020)
Gastón García González
,
Pedro Casas
,
Alicia Fernández
,
Gabriel Gómez
On the Usage of Generative Models for Network Anomaly Detection in Multivariate Time-Series.
CoRR
(2020)
Nikolas Wehner
,
Michael Seufert
,
Sebastian Egger-Lampl
,
Bruno Gardlo
,
Pedro Casas
,
Raimund Schatz
Scoring High: Analysis and Prediction of Viewer Behavior and Engagement in the Context of 2018 FIFA WC Live Streaming.
ACM Multimedia
(2020)
Sami Ben Mariem
,
Pedro Casas
,
Matteo Romiti
,
Benoit Donnet
,
Rainer Stütz
,
Bernhard Haslhofer
All that Glitters is not Bitcoin - Unveiling the Centralized Nature of the BTC (IP) Network.
NOMS
(2020)
Sarah Wassermann
,
Pedro Casas
,
Zied Ben-Houidi
,
Alexis Huet
,
Michael Seufert
,
Nikolas Wehner
,
Joshua Schüler
,
Shengming Cai
,
Hao Shi
,
Jinchun Xu
,
Tobias Hoßfeld
,
Dario Rossi
Are you on Mobile or Desktop? On the Impact of End-User Device on Web QoE Inference from Encrypted Traffic.
CNSM
(2020)
Maciej Korczynski
,
Wojciech Mazurczyk
,
Pedro Casas
Preface on the 5th International Workshop on Traffic Measurements for Cybersecurity.
EuroS&P Workshops
(2020)
Michael Seufert
,
Pedro Casas
,
Nikolas Wehner
,
Li Gang
,
Kuang Li
Features that Matter: Feature Selection for On-line Stalling Prediction in Encrypted Video Streaming.
INFOCOM Workshops
(2019)
Alessandro D'Alconzo
,
Idilio Drago
,
Andrea Morichetta
,
Marco Mellia
,
Pedro Casas
A Survey on Big Data for Network Traffic Monitoring and Analysis.
IEEE Trans. Netw. Serv. Manag.
16 (3) (2019)
Michael Seufert
,
Nikolas Wehner
,
Pedro Casas
A Fair Share for All: TCP-Inspired Adaptation Logic for QoE Fairness Among Heterogeneous HTTP Adaptive Video Streaming Clients.
IEEE Trans. Netw. Serv. Manag.
16 (2) (2019)
Andrea Morichetta
,
Pedro Casas
,
Marco Mellia
EXPLAIN-IT: Towards Explainable AI for Unsupervised Network Traffic Analysis.
Big-DAMA@CoNEXT
(2019)
Sarah Wassermann
,
Michael Seufert
,
Pedro Casas
,
Li Gang
,
Kuang Li
I See What you See: Real Time Prediction of Video Quality from Encrypted Streaming Traffic.
Internet-QoE@MOBICOM
(2019)
Gonzalo Marín
,
Pedro Casas
,
Germán Capdehourat
Deep in the Dark - Deep Learning-Based Malware Traffic Detection Without Expert Knowledge.
IEEE Symposium on Security and Privacy Workshops
(2019)
Pedro Casas
,
Florian Wamser
,
Fabián E. Bustamante
,
David R. Choffnes
Internet-QoE 2019: 4th Internet-QoE Workshop on QoE-based Analysis and Management of Data Communication Networks.
MobiCom
(2019)
Michael Seufert
,
Raimund Schatz
,
Nikolas Wehner
,
Pedro Casas
QUICker or not? -an Empirical Analysis of QUIC vs TCP for Video Streaming QoE Provisioning.
ICIN
(2019)
Lorenzo Maggi
,
Jérémie Leguay
,
Michael Seufert
,
Pedro Casas
Online Detection of Stalling and Scrubbing in Adaptive Video Streaming.
WiOpt
(2019)
Michael Seufert
,
Sarah Wassermann
,
Pedro Casas
Considering User Behavior in the Quality of Experience Cycle: Towards Proactive QoE-Aware Traffic Management.
IEEE Commun. Lett.
23 (7) (2019)
Sarah Wassermann
,
Thibaut Cuvelier
,
Pavol Mulinka
,
Pedro Casas
ADAM & RAL: Adaptive Memory Learning and Reinforcement Active Learning for Network Monitoring.
CNSM
(2019)
Sarah Wassermann
,
Michael Seufert
,
Pedro Casas
,
Li Gang
,
Kuang Li
Let me Decrypt your Beauty: Real-time Prediction of Video Resolution and Bitrate for Encrypted Video Streaming.
TMA
(2019)
Michael Seufert
,
Raimund Schatz
,
Nikolas Wehner
,
Bruno Gardlo
,
Pedro Casas
Is QUIC becoming the New TCP? On the Potential Impact of a New Protocol on Networked Multimedia QoE.
QoMEX
(2019)
Pavol Mulinka
,
Pedro Casas
,
Juan Martin Vanerio
Continuous and Adaptive Learning over Big Streaming Data for Network Security.
CloudNet
(2019)
Sarah Wassermann
,
Pedro Casas
,
Michael Seufert
,
Florian Wamser
On the Analysis of YouTube QoE in Cellular Networks through in-Smartphone Measurements.
WMNC
(2019)
Michael Seufert
,
Pedro Casas
,
Nikolas Wehner
,
Li Gang
,
Kuang Li
Stream-based Machine Learning for Real-time QoE Analysis of Encrypted Video Streaming Traffic.
ICIN
(2019)
Pedro Casas
,
Gonzalo Marín
,
Germán Capdehourat
,
Maciej Korczynski
MLSEC - Benchmarking Shallow and Deep Machine Learning Models for Network Security.
IEEE Symposium on Security and Privacy Workshops
(2019)
Pedro Casas
,
Pavol Mulinka
,
Juan Martin Vanerio
Should I (re)Learn or Should I Go(on)?: Stream Machine Learning for Adaptive Defense against Network Attacks.
MTD@CCS
(2019)
Sarah Wassermann
,
John P. Rula
,
Fabian E. Bustamante
,
Pedro Casas
Anycaston the Move: A Look at Mobile Anycast Performance.
TMA
(2018)
Florian Wamser
,
Nikolas Wehner
,
Michael Seufert
,
Pedro Casas
,
Phuoc Tran-Gia
You Tube QoE Monitoring with YoMoApp: A Web-Based Data Interface for Researchers.
TMA
(2018)
Michael Seufert
,
Nikolas Wehner
,
Pedro Casas
,
Florian Wamser
A Fair Share for All: Novel Adaptation Logic for QoE Fairness of HTTP Adaptive Video Streaming.
CNSM
(2018)
Sarah Wassermann
,
Pedro Casas
Distributed Internet Paths Performance Analysis Through Machine Learning.
TMA
(2018)
Pedro Casas
On the Analysis of Network Measurements Through Machine Learning: The Power of the Crowd.
TMA
(2018)
Pavol Mulinka
,
Pedro Casas
Adaptive Network Security through Stream Machine Learning.
SIGCOMM Posters and Demos
(2018)
Pedro Casas
,
Michael Seufert
,
Nikolas Wehner
,
Anika Schwind
,
Florian Wamser
Enhancing Machine Learning Based QoE Prediction by Ensemble Models.
ICDCS
(2018)
Sarah Wassermann
,
Pedro Casas
BIGMOMAL: Big Data Analytics for Mobile Malware Detection.
WTMC@SIGCOMM
(2018)
Gonzalo Marín
,
Pedro Casas
,
Germán Capdehourat
DeepSec meets RawPower - Deep Learning for Detection of Network Attacks Using Raw Representations.
SIGMETRICS Perform. Evaluation Rev.
46 (3) (2018)
Nikolas Wehner
,
Sarah Wassermann
,
Pedro Casas
,
Michael Seufert
,
Florian Wamser
Beauty is in the Eye of the Smartphone Holder A Data Driven Analysis of YouTube Mobile QoE.
CNSM
(2018)
Mark Shtern
,
Pedro Casas
,
Vassilios Tzerpos
Evaluating music mastering quality using machine learning.
CASCON
(2018)
Pedro Casas
MLNET - Machine Learning Models for Network Analytics.
EDBT/ICDT Workshops
(2018)
Michael Seufert
,
Nikolas Wehner
,
Pedro Casas
App for Dynamic Crowdsourced QoE Studies of HTTP Adaptive Streaming on Mobile Devices.
TMA
(2018)
Sarah Wassermann
,
Nikolas Wehner
,
Pedro Casas
Machine Learning Models for YouTube QoE and User Engagement Prediction in Smartphones.
SIGMETRICS Perform. Evaluation Rev.
46 (3) (2018)
Pavol Mulinka
,
Pedro Casas
Stream-based Machine Learning for Network Security and Anomaly Detection.
Big-DAMA@SIGCOMM
(2018)
Michael Seufert
,
Nikolas Wehner
,
Pedro Casas
Studying the Impact of HAS QoE Factors on the Standardized QoE Model P.1203.
ICDCS
(2018)
Pavol Mulinka
,
Pedro Casas
,
Lukas Kencl
Hi-Clust: Unsupervised Analysis of Cloud Latency Measurements Through Hierarchical Clustering.
CloudNet
(2018)
Gonzalo Marín
,
Pedro Casas
,
Germán Capdehourat
RawPower: Deep Learning based Anomaly Detection from Raw Network Traffic Measurements.
SIGCOMM Posters and Demos
(2018)
Anika Schwind
,
Florian Wamser
,
Thomas Gensler
,
Phuoc Tran-Gia
,
Michael Seufert
,
Pedro Casas
Streaming Characteristics of Spotify Sessions.
QoMEX
(2018)
Pedro Casas
Machine learning models for wireless network monitoring and analysis.
WCNC Workshops
(2018)
Pedro Casas
,
Juan Martin Vanerio
Super learning for anomaly detection in cellular networks.
WiMob
(2017)
Juan Martin Vanerio
,
Pedro Casas
Ensemble-learning Approaches for Network Security and Anomaly Detection.
Big-DAMA@SIGCOMM
(2017)
Pedro Casas
,
Juan Martin Vanerio
,
Kensuke Fukuda
GML learning, a generic machine learning model for network measurements analysis.
CNSM
(2017)
Pedro Casas
,
Sarah Wassermann
Improving QoE prediction in mobile video through machine learning.
NOF
(2017)
Pedro Casas
,
Francesca Soro
,
Juan Martin Vanerio
,
Giuseppe Settanni
,
Alessandro D'Alconzo
Network security and anomaly detection with Big-DAMA, a big data analytics framework.
CloudNet
(2017)
Michael Seufert
,
Nikolas Wehner
,
Florian Wamser
,
Pedro Casas
,
Alessandro D'Alconzo
,
Phuoc Tran-Gia
Unsupervised QoE field study for mobile YouTube video streaming with YoMoApp.
QoMEX
(2017)
Sarah Wassermann
,
Pedro Casas
,
Thibaut Cuvelier
,
Benoit Donnet
NETPerfTrace: Predicting Internet Path Dynamics and Performance with Machine Learning.
Big-DAMA@SIGCOMM
(2017)
Pedro Casas
,
Alessandro D'Alconzo
,
Florian Wamser
,
Michael Seufert
,
Bruno Gardlo
,
Anika Schwind
,
Phuoc Tran-Gia
,
Raimund Schatz
Predicting QoE in cellular networks using machine learning and in-smartphone measurements.
QoMEX
(2017)
Anika Schwind
,
Michael Seufert
,
Ozgu Alay
,
Pedro Casas
,
Phuoc Tran-Gia
,
Florian Wamser
Concept and implementation of video QoE measurements in a mobile broadband testbed.
TMA
(2017)
Pedro Casas
,
Bruno Gardlo
,
Raimund Schatz
,
Marco Mellia
An Educated Guess on QoE in Operational Networks through Large-Scale Measurements.
Internet-QoE@SIGCOMM
(2016)
Pedro Casas
,
Pierdomenico Fiadino
,
Alessandro D'Alconzo
When smartphones become the enemy: unveiling mobile apps anomalies through clustering techniques.
ATC@MobiCom
(2016)
Eirini Liotou
,
Raimund Schatz
,
Andreas Sackl
,
Pedro Casas
,
Dimitris Tsolkas
,
Nikos I. Passas
,
Lazaros F. Merakos
The Beauty of Consistency in Radio-Scheduling Decisions.
GLOBECOM Workshops
(2016)
Pedro Casas
,
Alessandro D'Alconzo
,
Giuseppe Settanni
,
Pierdomenico Fiadino
,
Florian Skopik
POSTER: (Semi)-Supervised Machine Learning Approaches for Network Security in High-Dimensional Network Data.
CCS
(2016)
Pedro Casas
,
Pierdomenico Fiadino
,
Alessandro D'Alconzo
Machine-Learning Based Approaches for Anomaly Detection and Classification in Cellular Networks.
TMA
(2016)