​
Login / Signup
Pan Xu
ORCID
Publication Activity (10 Years)
Years Active: 2016-2024
Publications (10 Years): 62
Top Topics
Monte Carlo Methods
Variance Reduction
Regret Bounds
Convex Optimization
Top Venues
CoRR
ICML
NeurIPS
AISTATS
</>
Publications
</>
Xuanfei Ren
,
Tianyuan Jin
,
Pan Xu
Optimal Batched Linear Bandits.
CoRR
(2024)
Haque Ishfaq
,
Yixin Tan
,
Yu Yang
,
Qingfeng Lan
,
Jianfeng Lu
,
A. Rupam Mahmood
,
Doina Precup
,
Pan Xu
More Efficient Randomized Exploration for Reinforcement Learning via Approximate Sampling.
CoRR
(2024)
Hao-Lun Hsu
,
Weixin Wang
,
Miroslav Pajic
,
Pan Xu
Randomized Exploration in Cooperative Multi-Agent Reinforcement Learning.
CoRR
(2024)
Tianyuan Jin
,
Hao-Lun Hsu
,
William Chang
,
Pan Xu
Finite-Time Frequentist Regret Bounds of Multi-Agent Thompson Sampling on Sparse Hypergraphs.
AAAI
(2024)
Haque Ishfaq
,
Qingfeng Lan
,
Pan Xu
,
A. Rupam Mahmood
,
Doina Precup
,
Anima Anandkumar
,
Kamyar Azizzadenesheli
Provable and Practical: Efficient Exploration in Reinforcement Learning via Langevin Monte Carlo.
ICLR
(2024)
Tianyuan Jin
,
Xianglin Yang
,
Xiaokui Xiao
,
Pan Xu
Thompson Sampling with Less Exploration is Fast and Optimal.
ICML
(2023)
Tianyuan Jin
,
Yu Yang
,
Jing Tang
,
Xiaokui Xiao
,
Pan Xu
Optimal Batched Best Arm Identification.
CoRR
(2023)
Yizhou Zhang
,
Guannan Qu
,
Pan Xu
,
Yiheng Lin
,
Zaiwei Chen
,
Adam Wierman
Global Convergence of Localized Policy Iteration in Networked Multi-Agent Reinforcement Learning.
SIGMETRICS (Abstracts)
(2023)
Haque Ishfaq
,
Qingfeng Lan
,
Pan Xu
,
A. Rupam Mahmood
,
Doina Precup
,
Anima Anandkumar
,
Kamyar Azizzadenesheli
Provable and Practical: Efficient Exploration in Reinforcement Learning via Langevin Monte Carlo.
CoRR
(2023)
Tianyuan Jin
,
Hao-Lun Hsu
,
William Chang
,
Pan Xu
Finite-Time Frequentist Regret Bounds of Multi-Agent Thompson Sampling on Sparse Hypergraphs.
CoRR
(2023)
Hao Lou
,
Tao Jin
,
Yue Wu
,
Pan Xu
,
Quanquan Gu
,
Farzad Farnoud
Active Ranking without Strong Stochastic Transitivity.
NeurIPS
(2022)
Yue Wu
,
Tao Jin
,
Hao Lou
,
Pan Xu
,
Farzad Farnoud
,
Quanquan Gu
Adaptive Sampling for Heterogeneous Rank Aggregation from Noisy Pairwise Comparisons.
AISTATS
(2022)
Pan Xu
,
Zheng Wen
,
Handong Zhao
,
Quanquan Gu
Neural Contextual Bandits with Deep Representation and Shallow Exploration.
ICLR
(2022)
Pan Xu
,
Hongkai Zheng
,
Eric V. Mazumdar
,
Kamyar Azizzadenesheli
,
Animashree Anandkumar
Langevin Monte Carlo for Contextual Bandits.
ICML
(2022)
Tianyuan Jin
,
Pan Xu
,
Xiaokui Xiao
,
Anima Anandkumar
Finite-Time Regret of Thompson Sampling Algorithms for Exponential Family Multi-Armed Bandits.
CoRR
(2022)
Pan Xu
,
Hongkai Zheng
,
Eric Mazumdar
,
Kamyar Azizzadenesheli
,
Anima Anandkumar
Langevin Monte Carlo for Contextual Bandits.
CoRR
(2022)
Tianyuan Jin
,
Pan Xu
,
Xiaokui Xiao
,
Anima Anandkumar
Finite-Time Regret of Thompson Sampling Algorithms for Exponential Family Multi-Armed Bandits.
NeurIPS
(2022)
Yue Wu
,
Tao Jin
,
Hao Lou
,
Pan Xu
,
Farzad Farnoud
,
Quanquan Gu
Adaptive Sampling for Heterogeneous Rank Aggregation from Noisy Pairwise Comparisons.
CoRR
(2021)
Tianyuan Jin
,
Pan Xu
,
Xiaokui Xiao
,
Quanquan Gu
Double Explore-then-Commit: Asymptotic Optimality and Beyond.
COLT
(2021)
Tianyuan Jin
,
Pan Xu
,
Jieming Shi
,
Xiaokui Xiao
,
Quanquan Gu
MOTS: Minimax Optimal Thompson Sampling.
ICML
(2021)
Tianyuan Jin
,
Jing Tang
,
Pan Xu
,
Keke Huang
,
Xiaokui Xiao
,
Quanquan Gu
Almost Optimal Anytime Algorithm for Batched Multi-Armed Bandits.
ICML
(2021)
Difan Zou
,
Pan Xu
,
Quanquan Gu
Faster Convergence of Stochastic Gradient Langevin Dynamics for Non-Log-Concave Sampling.
UAI
(2021)
Pan Xu
,
Zheng Wen
,
Handong Zhao
,
Quanquan Gu
Neural Contextual Bandits with Deep Representation and Shallow Exploration.
CoRR
(2020)
Yue Wu
,
Weitong Zhang
,
Pan Xu
,
Quanquan Gu
A Finite-Time Analysis of Two Time-Scale Actor-Critic Methods.
NeurIPS
(2020)
Tianyuan Jin
,
Pan Xu
,
Jieming Shi
,
Xiaokui Xiao
,
Quanquan Gu
MOTS: Minimax Optimal Thompson Sampling.
CoRR
(2020)
Yue Wu
,
Weitong Zhang
,
Pan Xu
,
Quanquan Gu
A Finite Time Analysis of Two Time-Scale Actor Critic Methods.
CoRR
(2020)
Pan Xu
,
Felicia Gao
,
Quanquan Gu
Sample Efficient Policy Gradient Methods with Recursive Variance Reduction.
ICLR
(2020)
Pan Xu
,
Quanquan Gu
A Finite-Time Analysis of Q-Learning with Neural Network Function Approximation.
ICML
(2020)
Tianyuan Jin
,
Pan Xu
,
Xiaokui Xiao
,
Quanquan Gu
Double Explore-then-Commit: Asymptotic Optimality and Beyond.
CoRR
(2020)
Tao Jin
,
Pan Xu
,
Quanquan Gu
,
Farzad Farnoud
Rank Aggregation via Heterogeneous Thurstone Preference Models.
AAAI
(2020)
Difan Zou
,
Pan Xu
,
Quanquan Gu
Faster Convergence of Stochastic Gradient Langevin Dynamics for Non-Log-Concave Sampling.
CoRR
(2020)
Dongruo Zhou
,
Pan Xu
,
Quanquan Gu
Stochastic Nested Variance Reduction for Nonconvex Optimization.
J. Mach. Learn. Res.
21 (2020)
Pan Xu
,
Felicia Gao
,
Quanquan Gu
Sample Efficient Policy Gradient Methods with Recursive Variance Reduction.
CoRR
(2019)
Dongruo Zhou
,
Pan Xu
,
Quanquan Gu
Stochastic Variance-Reduced Cubic Regularization Methods.
J. Mach. Learn. Res.
20 (2019)
Pan Xu
,
Quanquan Gu
A Finite-Time Analysis of Q-Learning with Neural Network Function Approximation.
CoRR
(2019)
Difan Zou
,
Pan Xu
,
Quanquan Gu
Stochastic Gradient Hamiltonian Monte Carlo Methods with Recursive Variance Reduction.
NeurIPS
(2019)
Difan Zou
,
Pan Xu
,
Quanquan Gu
Sampling from Non-Log-Concave Distributions via Variance-Reduced Gradient Langevin Dynamics.
AISTATS
(2019)
Tao Jin
,
Pan Xu
,
Quanquan Gu
,
Farzad Farnoud
Rank Aggregation via Heterogeneous Thurstone Preference Models.
CoRR
(2019)
Pan Xu
,
Felicia Gao
,
Quanquan Gu
An Improved Convergence Analysis of Stochastic Variance-Reduced Policy Gradient.
CoRR
(2019)
Pan Xu
,
Felicia Gao
,
Quanquan Gu
An Improved Convergence Analysis of Stochastic Variance-Reduced Policy Gradient.
UAI
(2019)
Pan Xu
,
Tianhao Wang
,
Quanquan Gu
Continuous and Discrete-time Accelerated Stochastic Mirror Descent for Strongly Convex Functions.
ICML
(2018)
Dongruo Zhou
,
Pan Xu
,
Quanquan Gu
Stochastic Nested Variance Reduced Gradient Descent for Nonconvex Optimization.
NeurIPS
(2018)
Jinghui Chen
,
Pan Xu
,
Lingxiao Wang
,
Jian Ma
,
Quanquan Gu
Covariate Adjusted Precision Matrix Estimation via Nonconvex Optimization.
ICML
(2018)
Dongruo Zhou
,
Pan Xu
,
Quanquan Gu
Stochastic Nested Variance Reduction for Nonconvex Optimization.
CoRR
(2018)
Difan Zou
,
Pan Xu
,
Quanquan Gu
Stochastic Variance-Reduced Hamilton Monte Carlo Methods.
ICML
(2018)
Dongruo Zhou
,
Pan Xu
,
Quanquan Gu
Stochastic Variance-Reduced Cubic Regularized Newton Method.
ICML
(2018)
Difan Zou
,
Pan Xu
,
Quanquan Gu
Stochastic Variance-Reduced Hamilton Monte Carlo Methods.
CoRR
(2018)
Pan Xu
,
Tianhao Wang
,
Quanquan Gu
Accelerated Stochastic Mirror Descent: From Continuous-time Dynamics to Discrete-time Algorithms.
AISTATS
(2018)
Dongruo Zhou
,
Pan Xu
,
Quanquan Gu
Sample Efficient Stochastic Variance-Reduced Cubic Regularization Method.
CoRR
(2018)
Pan Xu
,
Jinghui Chen
,
Difan Zou
,
Quanquan Gu
Global Convergence of Langevin Dynamics Based Algorithms for Nonconvex Optimization.
NeurIPS
(2018)
Yaodong Yu
,
Pan Xu
,
Quanquan Gu
Third-order Smoothness Helps: Faster Stochastic Optimization Algorithms for Finding Local Minima.
NeurIPS
(2018)
Dongruo Zhou
,
Pan Xu
,
Quanquan Gu
Stochastic Variance-Reduced Cubic Regularized Newton Method.
CoRR
(2018)
Difan Zou
,
Pan Xu
,
Quanquan Gu
Subsampled Stochastic Variance-Reduced Gradient Langevin Dynamics.
UAI
(2018)
Dongruo Zhou
,
Pan Xu
,
Quanquan Gu
Finding Local Minima via Stochastic Nested Variance Reduction.
CoRR
(2018)
Pan Xu
,
Tingting Zhang
,
Quanquan Gu
Efficient Algorithm for Sparse Tensor-variate Gaussian Graphical Models via Gradient Descent.
AISTATS
(2017)
Pan Xu
,
Jian Ma
,
Quanquan Gu
Speeding Up Latent Variable Gaussian Graphical Model Estimation via Nonconvex Optimization.
NIPS
(2017)
Yaodong Yu
,
Pan Xu
,
Quanquan Gu
Third-order Smoothness Helps: Even Faster Stochastic Optimization Algorithms for Finding Local Minima.
CoRR
(2017)
Pan Xu
,
Jian Ma
,
Quanquan Gu
Speeding Up Latent Variable Gaussian Graphical Model Estimation via Nonconvex Optimizations.
CoRR
(2017)
Aditya Chaudhry
,
Pan Xu
,
Quanquan Gu
Uncertainty Assessment and False Discovery Rate Control in High-Dimensional Granger Causal Inference.
ICML
(2017)
Pan Xu
,
Jinghui Chen
,
Quanquan Gu
Global Convergence of Langevin Dynamics Based Algorithms for Nonconvex Optimization.
CoRR
(2017)
Pan Xu
,
Quanquan Gu
Semiparametric Differential Graph Models.
NIPS
(2016)
Lu Tian
,
Pan Xu
,
Quanquan Gu
Forward Backward Greedy Algorithms for Multi-Task Learning with Faster Rates.
UAI
(2016)