Login / Signup
Neha S. Wadia
Publication Activity (10 Years)
Years Active: 2019-2023
Publications (10 Years): 6
Top Topics
Keywords
Deep Structure
Scalar Field
Saddle Points
Top Venues
CoRR
ICML
Neural Comput.
</>
Publications
</>
Neha S. Wadia
,
Yatin Dandi
,
Michael I. Jordan
A Gentle Introduction to Gradient-Based Optimization and Variational Inequalities for Machine Learning.
CoRR
(2023)
Neha S. Wadia
,
Daniel Duckworth
,
Samuel S. Schoenholz
,
Ethan Dyer
,
Jascha Sohl-Dickstein
Whitening and Second Order Optimization Both Make Information in the Dataset Unusable During Training, and Can Reduce or Prevent Generalization.
ICML
(2021)
Charles G. Frye
,
James Simon
,
Neha S. Wadia
,
Andrew Ligeralde
,
Michael Robert DeWeese
,
Kristofer E. Bouchard
Critical Point-Finding Methods Reveal Gradient-Flat Regions of Deep Network Losses.
Neural Comput.
33 (6) (2021)
Charles G. Frye
,
James Simon
,
Neha S. Wadia
,
Andrew Ligeralde
,
Michael Robert DeWeese
,
Kristofer E. Bouchard
Critical Point-Finding Methods Reveal Gradient-Flat Regions of Deep Network Losses.
CoRR
(2020)
Neha S. Wadia
,
Daniel Duckworth
,
Samuel S. Schoenholz
,
Ethan Dyer
,
Jascha Sohl-Dickstein
Whitening and second order optimization both destroy information about the dataset, and can make generalization impossible.
CoRR
(2020)
Charles G. Frye
,
Neha S. Wadia
,
Michael Robert DeWeese
,
Kristofer E. Bouchard
Numerically Recovering the Critical Points of a Deep Linear Autoencoder.
CoRR
(2019)