​
Login / Signup
Mitsugu Araki
ORCID
Publication Activity (10 Years)
Years Active: 2016-2024
Publications (10 Years): 9
Top Topics
Molecular Dynamics
Subcellular Localization
Contact Map
Free Energy
Top Venues
J. Chem. Inf. Model.
J. Comput. Chem.
Bioinform.
Nat. Mach. Intell.
</>
Publications
</>
Gert-Jan Bekker
,
Kanji Oshima
,
Mitsugu Araki
,
Yasushi Okuno
,
Narutoshi Kamiya
Binding Mechanism between Platelet Glycoprotein and Cyclic Peptide Elucidated by McMD-Based Dynamic Docking.
J. Chem. Inf. Model.
64 (10) (2024)
Kenichiro Takaba
,
Chiduru Watanabe
,
Atsushi Tokuhisa
,
Yoshinobu Akinaga
,
Biao Ma
,
Ryo Kanada
,
Mitsugu Araki
,
Yasushi Okuno
,
Yusuke Kawashima
,
Hirotomo Moriwaki
,
Norihito Kawashita
,
Teruki Honma
,
Kaori Fukuzawa
,
Shigenori Tanaka
Protein-ligand binding affinity prediction of cyclin-dependent kinase-2 inhibitors by dynamically averaged fragment molecular orbital-based interaction energy.
J. Comput. Chem.
43 (20) (2022)
Gert-Jan Bekker
,
Mitsugu Araki
,
Kanji Oshima
,
Yasushi Okuno
,
Narutoshi Kamiya
Accurate Binding Configuration Prediction of a G-Protein-Coupled Receptor to Its Antagonist Using Multicanonical Molecular Dynamics-Based Dynamic Docking.
J. Chem. Inf. Model.
61 (10) (2021)
Biao Ma
,
Kei Terayama
,
Shigeyuki Matsumoto
,
Yuta Isaka
,
Yoko Sasakura
,
Hiroaki Iwata
,
Mitsugu Araki
,
Yasushi Okuno
Structure-Based de Novo Molecular Generator Combined with Artificial Intelligence and Docking Simulations.
J. Chem. Inf. Model.
61 (7) (2021)
Shigeyuki Matsumoto
,
Shoichi Ishida
,
Mitsugu Araki
,
Takayuki Kato
,
Kei Terayama
,
Yasushi Okuno
Extraction of protein dynamics information from cryo-EM maps using deep learning.
Nat. Mach. Intell.
3 (2) (2021)
Gert-Jan Bekker
,
Mitsugu Araki
,
Kanji Oshima
,
Yasushi Okuno
,
Narutoshi Kamiya
Exhaustive search of the configurational space of heat-shock protein 90 with its inhibitor by multicanonical molecular dynamics based dynamic docking.
J. Comput. Chem.
41 (17) (2020)
Kei Terayama
,
Hiroaki Iwata
,
Mitsugu Araki
,
Yasushi Okuno
,
Koji Tsuda
Machine learning accelerates MD-based binding pose prediction between ligands and proteins.
Bioinform.
34 (5) (2018)
Mitsugu Araki
,
Hiroaki Iwata
,
Biao Ma
,
Atsuto Fujita
,
Kei Terayama
,
Yukari Sagae
,
Fumie Ono
,
Koji Tsuda
,
Narutoshi Kamiya
,
Yasushi Okuno
Improving the Accuracy of Protein-Ligand Binding Mode Prediction Using a Molecular Dynamics-Based Pocket Generation Approach.
J. Comput. Chem.
39 (32) (2018)
Mitsugu Araki
,
Narutoshi Kamiya
,
Miwa Sato
,
Masahiko Nakatsui
,
Takatsugu Hirokawa
,
Yasushi Okuno
The Effect of Conformational Flexibility on Binding Free Energy Estimation between Kinases and Their Inhibitors.
J. Chem. Inf. Model.
56 (12) (2016)