Login / Signup
Mathieu Even
Publication Activity (10 Years)
Years Active: 2020-2024
Publications (10 Years): 22
Top Topics
Statistical Learning
Svm Solvers
Random Graphs
Stochastic Gradient Descent
Top Venues
CoRR
NeurIPS
AISTATS
ICML
</>
Publications
</>
Kevin Scaman
,
Mathieu Even
,
Batiste Le Bars
,
Laurent Massoulié
Minimax Excess Risk of First-Order Methods for Statistical Learning with Data-Dependent Oracles.
AISTATS
(2024)
Sayan Biswas
,
Mathieu Even
,
Anne-Marie Kermarrec
,
Laurent Massoulié
,
Rafael Pires
,
Rishi Sharma
,
Martijn de Vos
Beyond Noise: Privacy-Preserving Decentralized Learning with Virtual Nodes.
CoRR
(2024)
Mathieu Even
,
Luca Ganassali
,
Jakob Maier
,
Laurent Massoulié
Aligning Embeddings and Geometric Random Graphs: Informational Results and Computational Approaches for the Procrustes-Wasserstein Problem.
CoRR
(2024)
Mathieu Even
,
Anastasia Koloskova
,
Laurent Massoulié
Asynchronous SGD on Graphs: a Unified Framework for Asynchronous Decentralized and Federated Optimization.
AISTATS
(2024)
Mathieu Even
Stochastic Gradient Descent under Markovian Sampling Schemes.
CoRR
(2023)
Mathieu Even
,
Scott Pesme
,
Suriya Gunasekar
,
Nicolas Flammarion
(S)GD over Diagonal Linear Networks: Implicit Regularisation, Large Stepsizes and Edge of Stability.
CoRR
(2023)
Kevin Scaman
,
Mathieu Even
,
Laurent Massoulié
Generalization Error of First-Order Methods for Statistical Learning with Generic Oracles.
CoRR
(2023)
Mathieu Even
,
Scott Pesme
,
Suriya Gunasekar
,
Nicolas Flammarion
(S)GD over Diagonal Linear Networks: Implicit bias, Large Stepsizes and Edge of Stability.
NeurIPS
(2023)
Mathieu Even
,
Anastasia Koloskova
,
Laurent Massoulié
Asynchronous SGD on Graphs: a Unified Framework for Asynchronous Decentralized and Federated Optimization.
CoRR
(2023)
Mathieu Even
Stochastic Gradient Descent under Markovian Sampling Schemes.
ICML
(2023)
Konstantin Mishchenko
,
Francis R. Bach
,
Mathieu Even
,
Blake E. Woodworth
Asynchronous SGD Beats Minibatch SGD Under Arbitrary Delays.
CoRR
(2022)
Konstantin Mishchenko
,
Francis R. Bach
,
Mathieu Even
,
Blake E. Woodworth
Asynchronous SGD Beats Minibatch SGD Under Arbitrary Delays.
NeurIPS
(2022)
Mathieu Even
,
Laurent Massoulié
,
Kevin Scaman
On Sample Optimality in Personalized Collaborative and Federated Learning.
NeurIPS
(2022)
Edwige Cyffers
,
Mathieu Even
,
Aurélien Bellet
,
Laurent Massoulié
Muffliato: Peer-to-Peer Privacy Amplification for Decentralized Optimization and Averaging.
NeurIPS
(2022)
Edwige Cyffers
,
Mathieu Even
,
Aurélien Bellet
,
Laurent Massoulié
Muffliato: Peer-to-Peer Privacy Amplification for Decentralized Optimization and Averaging.
CoRR
(2022)
Mathieu Even
,
Laurent Massoulié
Concentration of Non-Isotropic Random Tensors with Applications to Learning and Empirical Risk Minimization.
COLT
(2021)
Mathieu Even
,
Hadrien Hendrikx
,
Laurent Massoulié
Decentralized Optimization with Heterogeneous Delays: a Continuous-Time Approach.
CoRR
(2021)
Radu-Alexandru Dragomir
,
Mathieu Even
,
Hadrien Hendrikx
Fast Stochastic Bregman Gradient Methods: Sharp Analysis and Variance Reduction.
ICML
(2021)
Mathieu Even
,
Raphaël Berthier
,
Francis R. Bach
,
Nicolas Flammarion
,
Hadrien Hendrikx
,
Pierre Gaillard
,
Laurent Massoulié
,
Adrien B. Taylor
Continuized Accelerations of Deterministic and Stochastic Gradient Descents, and of Gossip Algorithms.
NeurIPS
(2021)
Mathieu Even
,
Laurent Massoulié
Concentration of Non-Isotropic Random Tensors with Applications to Learning and Empirical Risk Minimization.
CoRR
(2021)
Mathieu Even
,
Raphaël Berthier
,
Francis R. Bach
,
Nicolas Flammarion
,
Pierre Gaillard
,
Hadrien Hendrikx
,
Laurent Massoulié
,
Adrien Taylor
A Continuized View on Nesterov Acceleration for Stochastic Gradient Descent and Randomized Gossip.
CoRR
(2021)
Mathieu Even
,
Hadrien Hendrikx
,
Laurent Massoulié
Asynchrony and Acceleration in Gossip Algorithms.
CoRR
(2020)