Login / Signup
Lisa Jöckel
Publication Activity (10 Years)
Years Active: 2017-2023
Publications (10 Years): 26
Top Topics
Multiple Regression
Data Generation
Dempster Shafer Evidence Theory
Autonomous Vehicles
Top Venues
CoRR
SAFECOMP
SAFECOMP Workshops
RE
</>
Publications
</>
João-Vitor Zacchi
,
Francesco Carella
,
Priyank Upadhya
,
Shanza Ali Zafar
,
John Molloy
,
Lisa Jöckel
,
Janek Groß
,
Núria Mata
,
Nguyen Anh Vu Doan
Reliability Estimation of ML for Image Perception: A Lightweight Nonlinear Transformation Approach Based on Full Reference Image Quality Metrics.
MCSoC
(2023)
Lisa Jöckel
,
Michael Kläs
,
Janek Groß
,
Pascal Gerber
Conformal Prediction and Uncertainty Wrapper: What Statistical Guarantees Can You Get for Uncertainty Quantification in Machine Learning?
SAFECOMP Workshops
(2023)
Janek Groß
,
Michael Kläs
,
Lisa Jöckel
,
Pascal Gerber
Timeseries-aware Uncertainty Wrappers for Uncertainty Quantification of Information-Fusion-Enhanced AI Models based on Machine Learning.
DSN-W
(2023)
Lisa Jöckel
,
Michael Kläs
,
Janek Groß
,
Pascal Gerber
,
Markus Scholz
,
Jonathan Eberle
,
Marc Teschner
,
Daniel Seifert
,
Richard Hawkins
,
John Molloy
,
Jens Ottnad
Operationalizing Assurance Cases for Data Scientists: A Showcase of Concepts and Tooling in the Context of Test Data Quality for Machine Learning.
PROFES (1)
(2023)
Janek Groß
,
Michael Kläs
,
Lisa Jöckel
,
Pascal Gerber
Timeseries-aware Uncertainty Wrappers for Uncertainty Quantification of Information-Fusion-Enhanced AI Models based on Machine Learning.
CoRR
(2023)
Lisa Jöckel
,
Michael Kläs
,
Georg Popp
,
Nadja Hilger
,
Stephan Fricke
Uncertainty Wrapper in the medical domain: Establishing transparent uncertainty quantification for opaque machine learning models in practice.
CoRR
(2023)
Lisa Jöckel
,
Michael Kläs
,
Janek Groß
,
Pascal Gerber
,
Markus Scholz
,
Jonathan Eberle
,
Marc Teschner
,
Daniel Seifert
,
Richard Hawkins
,
John Molloy
,
Jens Ottnad
Operationalizing Assurance Cases for Data Scientists: A Showcase of Concepts and Tooling in the Context of Test Data Quality for Machine Learning.
CoRR
(2023)
Pascal Gerber
,
Lisa Jöckel
,
Michael Kläs
A Study on Mitigating Hard Boundaries of Decision-Tree-based Uncertainty Estimates for AI Models.
CoRR
(2022)
Janek Groß
,
Rasmus Adler
,
Michael Kläs
,
Jan Reich
,
Lisa Jöckel
,
Roman Gansch
Architectural Patterns for Handling Runtime Uncertainty of Data-Driven Models in Safety-Critical Perception.
SAFECOMP
(2022)
Michael Kläs
,
Lisa Jöckel
,
Rasmus Adler
,
Jan Reich
Integrating Testing and Operation-related Quantitative Evidences in Assurance Cases to Argue Safety of Data-Driven AI/ML Components.
CoRR
(2022)
Julien Siebert
,
Lisa Jöckel
,
Jens Heidrich
,
Adam Trendowicz
,
Koji Nakamichi
,
Kyoko Ohashi
,
Isao Namba
,
Rieko Yamamoto
,
Mikio Aoyama
Construction of a quality model for machine learning systems.
Softw. Qual. J.
30 (2) (2022)
Janek Groß
,
Rasmus Adler
,
Michael Kläs
,
Jan Reich
,
Lisa Jöckel
,
Roman Gansch
Architectural patterns for handling runtime uncertainty of data-driven models in safety-critical perception.
CoRR
(2022)
Pascal Gerber
,
Lisa Jöckel
,
Michael Kläs
A Study on Mitigating Hard Boundaries of Decision-Tree-based Uncertainty Estimates for AI Models.
SafeAI@AAAI
(2022)
Lisa Jöckel
,
Thomas Bauer
,
Michael Kläs
,
Marc P. Hauer
,
Janek Groß
Towards a Common Testing Terminology for Software Engineering and Artificial Intelligence Experts.
CoRR
(2021)
Michael Kläs
,
Rasmus Adler
,
Ioannis Sorokos
,
Lisa Jöckel
,
Jan Reich
Handling Uncertainties of Data-Driven Models in Compliance with Safety Constraints for Autonomous Behaviour.
EDCC
(2021)
Michael Klaes
,
Rasmus Adler
,
Lisa Jöckel
,
Janek Groß
,
Jan Reich
Using Complementary Risk Acceptance Criteria to Structure Assurance Cases for Safety-Critical AI Components.
AISafety@IJCAI
(2021)
Lisa Jöckel
,
Thomas Bauer
,
Michael Kläs
,
Marc P. Hauer
,
Janek Groß
Towards a Common Testing Terminology for Software Engineering and Data Science Experts.
PROFES
(2021)
Lisa Jöckel
,
Michael Kläs
Could We Relieve AI/ML Models of the Responsibility of Providing Dependable Uncertainty Estimates? A Study on Outside-Model Uncertainty Estimates.
SAFECOMP
(2021)
Julien Siebert
,
Lisa Jöckel
,
Jens Heidrich
,
Koji Nakamichi
,
Kyoko Ohashi
,
Isao Namba
,
Rieko Yamamoto
,
Mikio Aoyama
Towards Guidelines for Assessing Qualities of Machine Learning Systems.
CoRR
(2020)
Michael Kläs
,
Lisa Jöckel
A Framework for Building Uncertainty Wrappers for AI/ML-Based Data-Driven Components.
SAFECOMP Workshops
(2020)
Koji Nakamichi
,
Kyoko Ohashi
,
Isao Namba
,
Rieko Yamamoto
,
Mikio Aoyama
,
Lisa Jöckel
,
Julien Siebert
,
Jens Heidrich
Requirements-Driven Method to Determine Quality Characteristics and Measurements for Machine Learning Software and Its Evaluation.
RE
(2020)
Julien Siebert
,
Lisa Jöckel
,
Jens Heidrich
,
Koji Nakamichi
,
Kyoko Ohashi
,
Isao Namba
,
Rieko Yamamoto
,
Mikio Aoyama
Towards Guidelines for Assessing Qualities of Machine Learning Systems.
QUATIC
(2020)
Lisa Jöckel
,
Michael Kläs
,
Silverio Martínez-Fernández
Safe Traffic Sign Recognition through Data Augmentation for Autonomous Vehicles Software.
QRS Companion
(2019)
Lisa Jöckel
,
Michael Kläs
Increasing Trust in Data-Driven Model Validation - A Framework for Probabilistic Augmentation of Images and Meta-data Generation Using Application Scope Characteristics.
SAFECOMP
(2019)
Rasmus Adler
,
Mohammed Naveed Akram
,
Pascal Bauer
,
Patrik Feth
,
Pascal Gerber
,
Andreas Jedlitschka
,
Lisa Jöckel
,
Michael Kläs
,
Daniel Schneider
Hardening of Artificial Neural Networks for Use in Safety-Critical Applications - A Mapping Study.
CoRR
(2019)
Mathias Hummel
,
Lisa Jöckel
,
J. Schäfer
,
Mark W. Hlawitschka
,
Christoph Garth
Visualizing Probabilistic Multi-Phase Fluid Simulation Data using a Sampling Approach.
Comput. Graph. Forum
36 (3) (2017)