Login / Signup
Kyongmin Yeo
ORCID
Publication Activity (10 Years)
Years Active: 2010-2023
Publications (10 Years): 23
Top Topics
Diffusion Process
Dynamical Systems
Neural Network
Chaotic Time Series
Top Venues
CoRR
J. Comput. Phys.
SIAM J. Sci. Comput.
Big Data
</>
Publications
</>
Takuya Kurihana
,
Kyongmin Yeo
,
Daniela Szwarcman
,
Bruce Elmegreen
,
S. Karthik Mukkavilli
,
Johannes Schmude
,
Levente J. Klein
A 3D super-resolution of wind fields via physics-informed pixel-wise self-attention generative adversarial network.
CoRR
(2023)
Trang H. Tran
,
Lam M. Nguyen
,
Kyongmin Yeo
,
Nam Nguyen
,
Roman Vaculín
A Supervised Contrastive Learning Pretrain-Finetune Approach for Time Series.
CoRR
(2023)
Trang H. Tran
,
Lam M. Nguyen
,
Kyongmin Yeo
,
Nam Nguyen
,
Dzung Phan
,
Roman Vaculín
,
Jayant Kalagnanam
An End-to-End Time Series Model for Simultaneous Imputation and Forecast.
CoRR
(2023)
Xiao Liu
,
Kyongmin Yeo
Inverse Models for Estimating the Initial Condition of Spatio-Temporal Advection-Diffusion Processes.
Technometrics
65 (3) (2023)
Mykhaylo Zayats
,
Malgorzata J. Zimon
,
Kyongmin Yeo
,
Sergiy Zhuk
Super Resolution for Turbulent Flows in 2D: Stabilized Physics Informed Neural Networks.
CoRR
(2022)
Kyongmin Yeo
,
Zan Li
,
Wesley M. Gifford
Generative Adversarial Network for Probabilistic Forecast of Random Dynamical Systems.
SIAM J. Sci. Comput.
44 (4) (2022)
Arka Daw
,
Kyongmin Yeo
,
Anuj Karpatne
,
Levente J. Klein
Multi-task Learning for Source Attribution and Field Reconstruction for Methane Monitoring.
CoRR
(2022)
Mykhaylo Zayats
,
Malgorzata J. Zimon
,
Kyongmin Yeo
,
Sergiy Zhuk
Super Resolution for Turbulent Flows in 2D: Stabilized Physics Informed Neural Networks.
CDC
(2022)
Arka Daw
,
Kyongmin Yeo
,
Anuj Karpatne
,
Levente J. Klein
Multi-task Learning for Source Attribution and Field Reconstruction for Methane Monitoring.
Big Data
(2022)
Xinchao Liu
,
Kyongmin Yeo
,
Levente J. Klein
,
Youngdeok Hwang
,
Dzung Phan
,
Xiao Liu
Optimal Sensor Placement for Atmospheric Inverse Modelling.
Big Data
(2022)
Chulin Wang
,
Kyongmin Yeo
,
Xiao Jin
,
Andrés Codas
,
Levente J. Klein
,
Bruce Elmegreen
S3RP: Self-Supervised Super-Resolution and Prediction for Advection-Diffusion Process.
CoRR
(2021)
Kyongmin Yeo
,
Dylan E. C. Grullon
,
Fan-Keng Sun
,
Duane S. Boning
,
Jayant R. Kalagnanam
Variational Inference Formulation for a Model-Free Simulation of a Dynamical System with Unknown Parameters by a Recurrent Neural Network.
SIAM J. Sci. Comput.
43 (2) (2021)
Kyongmin Yeo
,
Zan Li
,
Wesley M. Gifford
Generative Adversarial Network for Probabilistic Forecast of Random Dynamical System.
CoRR
(2021)
Kyongmin Yeo
,
Dylan E. C. Grullon
,
Fan-Keng Sun
,
Duane S. Boning
,
Jayant R. Kalagnanam
Variational inference formulation for a model-free simulation of a dynamical system with unknown parameters by a recurrent neural network.
CoRR
(2020)
Kyongmin Yeo
Data-driven Reconstruction of Nonlinear Dynamics from Sparse Observation.
CoRR
(2019)
Kyongmin Yeo
Data-driven reconstruction of nonlinear dynamics from sparse observation.
J. Comput. Phys.
395 (2019)
Kyongmin Yeo
,
Igor Melnyk
Deep learning algorithm for data-driven simulation of noisy dynamical system.
J. Comput. Phys.
376 (2019)
Kyongmin Yeo
Short note on the behavior of recurrent neural network for noisy dynamical system.
CoRR
(2019)
Youngdeok Hwang
,
Hang J. Kim
,
Won Chang
,
Kyongmin Yeo
,
Yongku Kim
Bayesian pollution source identification via an inverse physics model.
Comput. Stat. Data Anal.
134 (2019)
Kyongmin Yeo
,
Igor Melnyk
Deep learning algorithm for data-driven simulation of noisy dynamical system.
CoRR
(2018)
Kyongmin Yeo
,
Youngdeok Hwang
,
Xiao Liu
,
Jayant Kalagnanam
Development of a spectral source inverse model by using generalized polynomial chaos.
CoRR
(2018)
Kyongmin Yeo
,
Igor Melnyk
,
Nam Nguyen
,
Eun Kyung Lee
DE-RNN: Forecasting the Probability Density Function of Nonlinear Time Series.
ICDM
(2018)
Kyongmin Yeo
Model-free prediction of noisy chaotic time series by deep learning.
CoRR
(2017)
Kyongmin Yeo
,
Martin R. Maxey
Simulation of concentrated suspensions using the force-coupling method.
J. Comput. Phys.
229 (6) (2010)