Login / Signup
Juan Cerviño
ORCID
Publication Activity (10 Years)
Years Active: 2019-2024
Publications (10 Years): 23
Top Topics
Neural Network
Variance Reduction
Dense Subgraphs
Dynamic Graph
Top Venues
CoRR
ICASSP
IEEE Trans. Signal Process.
LoG
</>
Publications
</>
Juan Cerviño
,
Md Asadullah Turja
,
Hesham Mostafa
,
Nageen Himayat
,
Alejandro Ribeiro
Distributed Training of Large Graph Neural Networks with Variable Communication Rates.
CoRR
(2024)
Zhiyang Wang
,
Juan Cerviño
,
Alejandro Ribeiro
A Manifold Perspective on the Statistical Generalization of Graph Neural Networks.
CoRR
(2024)
Juan Cerviño
,
Luiz F. O. Chamon
,
Benjamin David Haeffele
,
René Vidal
,
Alejandro Ribeiro
Learning Globally Smooth Functions on Manifolds.
ICML
(2023)
Shubhankar P. Patankar
,
Mathieu Ouellet
,
Juan Cerviño
,
Alejandro Ribeiro
,
Kieran A. Murphy
,
Dani S. Bassett
Intrinsically motivated graph exploration using network theories of human curiosity.
CoRR
(2023)
Shubhankar Prashant Patankar
,
Mathieu Ouellet
,
Juan Cerviño
,
Alejandro Ribeiro
,
Kieran A. Murphy
,
Danielle S. Bassett
Intrinsically Motivated Graph Exploration Using Network Theories of Human Curiosity.
LoG
(2023)
Hesham Mostafa
,
Adam Grabowski
,
Md Asadullah Turja
,
Juan Cerviño
,
Alejandro Ribeiro
,
Nageen Himayat
FastSample: Accelerating Distributed Graph Neural Network Training for Billion-Scale Graphs.
CoRR
(2023)
Juan Cerviño
,
Luana Ruiz
,
Alejandro Ribeiro
Learning by Transference: Training Graph Neural Networks on Growing Graphs.
IEEE Trans. Signal Process.
71 (2023)
Juan Cerviño
,
Juan Andrés Bazerque
,
Miguel Calvo-Fullana
,
Alejandro Ribeiro
Multi-Task Bias-Variance Trade-Off Through Functional Constraints.
ICASSP
(2023)
Juan Cerviño
,
Luana Ruiz
,
Alejandro Ribeiro
Training Graph Neural Networks on Growing Stochastic Graphs.
ICASSP
(2023)
Zebang Shen
,
Juan Cerviño
,
Hamed Hassani
,
Alejandro Ribeiro
An Agnostic Approach to Federated Learning with Class Imbalance.
ICLR
(2022)
Juan Cerviño
,
Luiz F. O. Chamon
,
Benjamin D. Haeffele
,
René Vidal
,
Alejandro Ribeiro
Learning Globally Smooth Functions on Manifolds.
CoRR
(2022)
Juan Cerviño
,
Navid Naderializadeh
,
Alejandro Ribeiro
Federated Representation Learning via Maximal Coding Rate Reduction.
CoRR
(2022)
Juan Cerviño
,
Juan Andrés Bazerque
,
Miguel Calvo-Fullana
,
Alejandro Ribeiro
Multi-task Bias-Variance Trade-off Through Functional Constraints.
CoRR
(2022)
Juan Cerviño
,
Luana Ruiz
,
Alejandro Ribeiro
Training Graph Neural Networks on Growing Stochastic Graphs.
CoRR
(2022)
Juan Cerviño
,
Luana Ruiz
,
Alejandro Ribeiro
Training Stable Graph Neural Networks Through Constrained Learning.
ICASSP
(2022)
Juan Cerviño
,
Juan Andrés Bazerque
,
Miguel Calvo-Fullana
,
Alejandro Ribeiro
Multi-task Supervised Learning via Cross-learning.
EUSIPCO
(2021)
Juan Cerviño
,
Luana Ruiz
,
Alejandro Ribeiro
Training Stable Graph Neural Networks Through Constrained Learning.
CoRR
(2021)
Juan Cerviño
,
Juan Andrés Bazerque
,
Miguel Calvo-Fullana
,
Alejandro Ribeiro
Multi-Task Reinforcement Learning in Reproducing Kernel Hilbert Spaces via Cross-Learning.
IEEE Trans. Signal Process.
69 (2021)
Juan Cerviño
,
Luana Ruiz
,
Alejandro Ribeiro
Increase and Conquer: Training Graph Neural Networks on Growing Graphs.
CoRR
(2021)
Juan Cerviño
,
Harshat Kumar
,
Alejandro Ribeiro
Parameter Critic: a Model Free Variance Reduction Method Through Imperishable Samples.
CoRR
(2020)
Juan Cerviño
,
Juan Andrés Bazerque
,
Miguel Calvo-Fullana
,
Alejandro Ribeiro
Multi-task Reinforcement Learning in Reproducing Kernel Hilbert Spaces via Cross-learning.
CoRR
(2020)
Juan Cerviño
,
Juan Andrés Bazerque
,
Miguel Calvo-Fullana
,
Alejandro Ribeiro
Multi-task Supervised Learning via Cross-learning.
CoRR
(2020)
Juan Cerviño
,
Juan Andrés Bazerque
,
Miguel Calvo-Fullana
,
Alejandro Ribeiro
Meta-Learning through Coupled Optimization in Reproducing Kernel Hilbert Spaces.
ACC
(2019)