Login / Signup
Ghislain Haine
ORCID
Publication Activity (10 Years)
Years Active: 2012-2022
Publications (10 Years): 7
Top Topics
Discretization Method
Structure Preserving
Wave Equation
Hamilton Jacobi
Top Venues
CoRR
GSI (2)
GSI
Math. Control. Signals Syst.
</>
Publications
</>
Charles Poussot-Vassal
,
Denis Matignon
,
Ghislain Haine
,
Pierre Vuillemin
Data-driven identification of a 2D wave equation model with port-Hamiltonian structure.
CoRR
(2022)
Gabriel Verrier
,
Ghislain Haine
,
Denis Matignon
Modelling and Structure-Preserving Discretization of the Schrödinger as a Port-Hamiltonian System, and Simulation of a Controlled Quantum Box.
GSI (2)
(2021)
Antoine Bendimerad-Hohl
,
Ghislain Haine
,
Denis Matignon
Structure-preserving Discretization of the Cahn-Hilliard Equations Recast as a Port-Hamiltonian System.
GSI (2)
(2021)
Ghislain Haine
,
Denis Matignon
Structure-Preserving Discretization of a Coupled Heat-Wave System, as Interconnected Port-Hamiltonian Systems.
GSI
(2021)
Andrea Brugnoli
,
Ghislain Haine
,
Anass Serhani
,
Xavier Vasseur
Numerical approximation of port-Hamiltonian systems for hyperbolic or parabolic PDEs with boundary control.
CoRR
(2020)
Ghislain Haine
,
Denis Matignon
,
Anass Serhani
Numerical analysis of a structure-preserving space-discretization for an anisotropic and heterogeneous boundary controlled N-dimensional wave equation as port-Hamiltonian system.
CoRR
(2020)
Anass Serhani
,
Denis Matignon
,
Ghislain Haine
A Partitioned Finite Element Method for the Structure-Preserving Discretization of Damped Infinite-Dimensional Port-Hamiltonian Systems with Boundary Control.
GSI
(2019)
Ghislain Haine
Recovering the observable part of the initial data of an infinite-dimensional linear system with perturbed skew-adjoint generator using observers.
ECC
(2015)
Ghislain Haine
Recovering the observable part of the initial data of an infinite-dimensional linear system with skew-adjoint generator.
Math. Control. Signals Syst.
26 (3) (2014)
Ghislain Haine
,
Karim Ramdani
Reconstructing initial data using observers: error analysis of the semi-discrete and fully discrete approximations.
Numerische Mathematik
120 (2) (2012)