Login / Signup
Douglas D. Novaes
ORCID
Publication Activity (10 Years)
Years Active: 2015-2024
Publications (10 Years): 6
Top Topics
Hough Transform
Finite Sets
Chaotic Map
Straight Line
Top Venues
Int. J. Bifurc. Chaos
J. Nonlinear Sci.
Appl. Math. Lett.
SIAM J. Appl. Dyn. Syst.
</>
Publications
</>
Tiago de Carvalho
,
Douglas D. Novaes
,
Durval José Tonon
Sliding Mode on Tangential Sets of Filippov Systems.
J. Nonlinear Sci.
34 (4) (2024)
Victoriano Carmona
,
Fernando Fernández-Sánchez
,
Douglas D. Novaes
A Succinct Characterization of Period Annuli in Planar Piecewise Linear Differential Systems with a Straight Line of Nonsmoothness.
J. Nonlinear Sci.
33 (5) (2023)
Victoriano Carmona
,
Fernando Fernández-Sánchez
,
Douglas D. Novaes
Uniqueness and stability of limit cycles in planar piecewise linear differential systems without sliding region.
Commun. Nonlinear Sci. Numer. Simul.
123 (2023)
Victoriano Carmona
,
Fernando Fernández-Sánchez
,
Douglas D. Novaes
Uniform upper bound for the number of limit cycles of planar piecewise linear differential systems with two zones separated by a straight line.
Appl. Math. Lett.
137 (2023)
Douglas D. Novaes
,
Francisco B. Silva
Higher Order Analysis on the Existence of Periodic Solutions in Continuous Differential Equations via Degree Theory.
SIAM J. Math. Anal.
53 (2) (2021)
Douglas D. Novaes
,
Tere M. Seara
,
Marco Antonio Teixeira
,
Iris O. Zeli
Study of Periodic Orbits in Periodic Perturbations of Planar Reversible Filippov Systems Having a Twofold Cycle.
SIAM J. Appl. Dyn. Syst.
19 (2) (2020)
Márcio R. A. Gouveia
,
Jaume Llibre
,
Douglas D. Novaes
On limit cycles bifurcating from the infinity in discontinuous piecewise linear differential systems.
Appl. Math. Comput.
271 (2015)
Douglas D. Novaes
,
Enrique Ponce
A Simple Solution to the Braga-Mello Conjecture.
Int. J. Bifurc. Chaos
25 (1) (2015)
Jaume Llibre
,
Douglas D. Novaes
,
Marco Antonio Teixeira
Limit Cycles Bifurcating from the Periodic Orbits of a Discontinuous Piecewise Linear Differentiable Center with Two Zones.
Int. J. Bifurc. Chaos
25 (11) (2015)