Login / Signup
Andrew Jesson
ORCID
Publication Activity (10 Years)
Years Active: 2017-2024
Publications (10 Years): 32
Top Topics
Active Learning
Causal Models
Observational Data
Top Venues
CoRR
ICML
NeurIPS
MICCAI (3)
</>
Publications
</>
Andrew Jesson
,
Nicolas Beltran-Velez
,
Quentin Chu
,
Sweta Karlekar
,
Jannik Kossen
,
Yarin Gal
,
John P. Cunningham
,
David M. Blei
Estimating the Hallucination Rate of Generative AI.
CoRR
(2024)
Myrl G. Marmarelis
,
Elizabeth Haddad
,
Andrew Jesson
,
Neda Jahanshad
,
Aram Galstyan
,
Greg Ver Steeg
Partial identification of dose responses with hidden confounders.
UAI
(2023)
Miruna Oprescu
,
Jacob Dorn
,
Marah Ghoummaid
,
Andrew Jesson
,
Nathan Kallus
,
Uri Shalit
B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under Hidden Confounding.
CoRR
(2023)
Maëlys Solal
,
Andrew Jesson
,
Yarin Gal
,
Alyson Douglas
Using uncertainty-aware machine learning models to study aerosol-cloud interactions.
CoRR
(2023)
Clare Lyle
,
Arash Mehrjou
,
Pascal Notin
,
Andrew Jesson
,
Stefan Bauer
,
Yarin Gal
,
Patrick Schwab
DiscoBAX: Discovery of Optimal Intervention Sets in Genomic Experiment Design.
CoRR
(2023)
Andrew Jesson
,
Chris Lu
,
Gunshi Gupta
,
Angelos Filos
,
Jakob Nicolaus Foerster
,
Yarin Gal
ReLU to the Rescue: Improve Your On-Policy Actor-Critic with Positive Advantages.
CoRR
(2023)
Shreshth A. Malik
,
Salem Lahlou
,
Andrew Jesson
,
Moksh Jain
,
Nikolay Malkin
,
Tristan Deleu
,
Yoshua Bengio
,
Yarin Gal
BatchGFN: Generative Flow Networks for Batch Active Learning.
CoRR
(2023)
Miruna Oprescu
,
Jacob Dorn
,
Marah Ghoummaid
,
Andrew Jesson
,
Nathan Kallus
,
Uri Shalit
B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under Hidden Confounding.
ICML
(2023)
Panagiotis Tigas
,
Yashas Annadani
,
Desi R. Ivanova
,
Andrew Jesson
,
Yarin Gal
,
Adam Foster
,
Stefan Bauer
Differentiable Multi-Target Causal Bayesian Experimental Design.
ICML
(2023)
Andreas Kirsch
,
Sebastian Farquhar
,
Parmida Atighehchian
,
Andrew Jesson
,
Frédéric Branchaud-Charron
,
Yarin Gal
Stochastic Batch Acquisition: A Simple Baseline for Deep Active Learning.
Trans. Mach. Learn. Res.
2023 (2023)
Clare Lyle
,
Arash Mehrjou
,
Pascal Notin
,
Andrew Jesson
,
Stefan Bauer
,
Yarin Gal
,
Patrick Schwab
DiscoBAX: Discovery of optimal intervention sets in genomic experiment design.
ICML
(2023)
Yashas Annadani
,
Panagiotis Tigas
,
Desi R. Ivanova
,
Andrew Jesson
,
Yarin Gal
,
Adam Foster
,
Stefan Bauer
Differentiable Multi-Target Causal Bayesian Experimental Design.
CoRR
(2023)
Panagiotis Tigas
,
Yashas Annadani
,
Andrew Jesson
,
Bernhard Schölkopf
,
Yarin Gal
,
Stefan Bauer
Interventions, Where and How? Experimental Design for Causal Models at Scale.
NeurIPS
(2022)
Andrew Jesson
,
Alyson Douglas
,
Peter Manshausen
,
Nicolai Meinshausen
,
Philip Stier
,
Yarin Gal
,
Uri Shalit
Scalable Sensitivity and Uncertainty Analysis for Causal-Effect Estimates of Continuous-Valued Interventions.
CoRR
(2022)
Panagiotis Tigas
,
Yashas Annadani
,
Andrew Jesson
,
Bernhard Schölkopf
,
Yarin Gal
,
Stefan Bauer
Interventions, Where and How? Experimental Design for Causal Models at Scale.
CoRR
(2022)
Andrew Jesson
,
Alyson Douglas
,
Peter Manshausen
,
Maëlys Solal
,
Nicolai Meinshausen
,
Philip Stier
,
Yarin Gal
,
Uri Shalit
Scalable Sensitivity and Uncertainty Analyses for Causal-Effect Estimates of Continuous-Valued Interventions.
NeurIPS
(2022)
Arash Mehrjou
,
Ashkan Soleymani
,
Andrew Jesson
,
Pascal Notin
,
Yarin Gal
,
Stefan Bauer
,
Patrick Schwab
GeneDisco: A Benchmark for Experimental Design in Drug Discovery.
ICLR
(2022)
Joost van Amersfoort
,
Lewis Smith
,
Andrew Jesson
,
Oscar Key
,
Yarin Gal
Improving Deterministic Uncertainty Estimation in Deep Learning for Classification and Regression.
CoRR
(2021)
Andrew Jesson
,
Panagiotis Tigas
,
Joost van Amersfoort
,
Andreas Kirsch
,
Uri Shalit
,
Yarin Gal
Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.
NeurIPS
(2021)
Andrew Jesson
,
Panagiotis Tigas
,
Joost van Amersfoort
,
Andreas Kirsch
,
Uri Shalit
,
Yarin Gal
Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.
CoRR
(2021)
Arash Mehrjou
,
Ashkan Soleymani
,
Andrew Jesson
,
Pascal Notin
,
Yarin Gal
,
Stefan Bauer
,
Patrick Schwab
GeneDisco: A Benchmark for Experimental Design in Drug Discovery.
CoRR
(2021)
Andrew Jesson
,
Peter Manshausen
,
Alyson Douglas
,
Duncan Watson-Parris
,
Yarin Gal
,
Philip Stier
Using Non-Linear Causal Models to Study Aerosol-Cloud Interactions in the Southeast Pacific.
CoRR
(2021)
Andrew Jesson
,
Sören Mindermann
,
Yarin Gal
,
Uri Shalit
Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding.
CoRR
(2021)
Andrew Jesson
,
Sören Mindermann
,
Yarin Gal
,
Uri Shalit
Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding.
ICML
(2021)
Andrew Jesson
,
Sören Mindermann
,
Uri Shalit
,
Yarin Gal
Identifying Causal-Effect Inference Failure with Uncertainty-Aware Models.
NeurIPS
(2020)
Andrew Jesson
,
Sören Mindermann
,
Uri Shalit
,
Yarin Gal
Identifying Causal Effect Inference Failure with Uncertainty-Aware Models.
CoRR
(2020)
Xiang Jiang
,
Liqiang Ding
,
Mohammad Havaei
,
Andrew Jesson
,
Stan Matwin
Task Adaptive Metric Space for Medium-Shot Medical Image Classification.
MICCAI (1)
(2019)
Andrew Jesson
,
Nicolas Guizard
,
Sina Hamidi Ghalehjegh
,
Damien Goblot
,
Florian Soudan
,
Nicolas Chapados
CASED: Curriculum Adaptive Sampling for Extreme Data Imbalance.
CoRR
(2018)
Andrew Jesson
,
Cécile Low-Kam
,
Florian Soudan
,
Nicolas Chapados
Adversarially Learned Mixture Model.
CoRR
(2018)
Xiang Jiang
,
Mohammad Havaei
,
Gabriel Chartrand
,
Hassan Chouaib
,
Thomas Vincent
,
Andrew Jesson
,
Nicolas Chapados
,
Stan Matwin
On the Importance of Attention in Meta-Learning for Few-Shot Text Classification.
CoRR
(2018)
Andrew Jesson
,
Nicolas Guizard
,
Sina Hamidi Ghalehjegh
,
Damien Goblot
,
Florian Soudan
,
Nicolas Chapados
CASED: Curriculum Adaptive Sampling for Extreme Data Imbalance.
MICCAI (3)
(2017)
Andrew Jesson
,
Tal Arbel
Brain Tumor Segmentation Using a 3D FCN with Multi-scale Loss.
BrainLes@MICCAI
(2017)