Login / Signup
Alicia Curth
Publication Activity (10 Years)
Years Active: 2019-2024
Publications (10 Years): 34
Top Topics
Random Forests
Nonparametric Estimation
Statistical Learning
E Learning
Top Venues
CoRR
NeurIPS
ICML
ICLR
</>
Publications
</>
Dennis Frauen
,
Fergus Imrie
,
Alicia Curth
,
Valentyn Melnychuk
,
Stefan Feuerriegel
,
Mihaela van der Schaar
A Neural Framework for Generalized Causal Sensitivity Analysis.
ICLR
(2024)
Alicia Curth
,
Alan Jeffares
,
Mihaela van der Schaar
Why do Random Forests Work? Understanding Tree Ensembles as Self-Regularizing Adaptive Smoothers.
CoRR
(2024)
Alicia Curth
,
Hoifung Poon
,
Aditya V. Nori
,
Javier González
Cautionary Tales on Synthetic Controls in Survival Analyses.
CLeaR
(2024)
Alihan Hüyük
,
Qiyao Wei
,
Alicia Curth
,
Mihaela van der Schaar
Defining Expertise: Applications to Treatment Effect Estimation.
ICLR
(2024)
Alihan Hüyük
,
Qiyao Wei
,
Alicia Curth
,
Mihaela van der Schaar
Defining Expertise: Applications to Treatment Effect Estimation.
CoRR
(2024)
Alicia Curth
,
Alan Jeffares
,
Mihaela van der Schaar
A U-turn on Double Descent: Rethinking Parameter Counting in Statistical Learning.
CoRR
(2023)
Alicia Curth
,
Mihaela van der Schaar
Understanding the Impact of Competing Events on Heterogeneous Treatment Effect Estimation from Time-to-Event Data.
AISTATS
(2023)
Alicia Curth
,
Mihaela van der Schaar
In Search of Insights, Not Magic Bullets: Towards Demystification of the Model Selection Dilemma in Heterogeneous Treatment Effect Estimation.
ICML
(2023)
Alicia Curth
,
Alan Jeffares
,
Mihaela van der Schaar
A U-turn on Double Descent: Rethinking Parameter Counting in Statistical Learning.
NeurIPS
(2023)
Alicia Curth
,
Mihaela van der Schaar
Understanding the Impact of Competing Events on Heterogeneous Treatment Effect Estimation from Time-to-Event Data.
CoRR
(2023)
Toon Vanderschueren
,
Alicia Curth
,
Wouter Verbeke
,
Mihaela van der Schaar
Accounting For Informative Sampling When Learning to Forecast Treatment Outcomes Over Time.
ICML
(2023)
Alicia Curth
,
Alihan Hüyük
,
Mihaela van der Schaar
Adaptive Identification of Populations with Treatment Benefit in Clinical Trials: Machine Learning Challenges and Solutions.
ICML
(2023)
Alicia Curth
,
Mihaela van der Schaar
In Search of Insights, Not Magic Bullets: Towards Demystification of the Model Selection Dilemma in Heterogeneous Treatment Effect Estimation.
CoRR
(2023)
Toon Vanderschueren
,
Alicia Curth
,
Wouter Verbeke
,
Mihaela van der Schaar
Accounting For Informative Sampling When Learning to Forecast Treatment Outcomes Over Time.
CoRR
(2023)
Dennis Frauen
,
Fergus Imrie
,
Alicia Curth
,
Valentyn Melnychuk
,
Stefan Feuerriegel
,
Mihaela van der Schaar
A Neural Framework for Generalized Causal Sensitivity Analysis.
CoRR
(2023)
Daniel Jarrett
,
Bogdan Cebere
,
Tennison Liu
,
Alicia Curth
,
Mihaela van der Schaar
HyperImpute: Generalized Iterative Imputation with Automatic Model Selection.
CoRR
(2022)
Jonathan Crabbé
,
Alicia Curth
,
Ioana Bica
,
Mihaela van der Schaar
Benchmarking Heterogeneous Treatment Effect Models through the Lens of Interpretability.
NeurIPS
(2022)
Alicia Curth
,
Alihan Hüyük
,
Mihaela van der Schaar
Adaptively Identifying Patient Populations With Treatment Benefit in Clinical Trials.
CoRR
(2022)
Daniel Jarrett
,
Bogdan Cebere
,
Tennison Liu
,
Alicia Curth
,
Mihaela van der Schaar
HyperImpute: Generalized Iterative Imputation with Automatic Model Selection.
ICML
(2022)
Tobias Hatt
,
Jeroen Berrevoets
,
Alicia Curth
,
Stefan Feuerriegel
,
Mihaela van der Schaar
Combining Observational and Randomized Data for Estimating Heterogeneous Treatment Effects.
CoRR
(2022)
Alex J. Chan
,
Alicia Curth
,
Mihaela van der Schaar
Inverse Online Learning: Understanding Non-Stationary and Reactionary Policies.
CoRR
(2022)
Alex J. Chan
,
Alicia Curth
,
Mihaela van der Schaar
Inverse Online Learning: Understanding Non-Stationary and Reactionary Policies.
ICLR
(2022)
Jonathan Crabbé
,
Alicia Curth
,
Ioana Bica
,
Mihaela van der Schaar
Benchmarking Heterogeneous Treatment Effect Models through the Lens of Interpretability.
CoRR
(2022)
Alicia Curth
,
Changhee Lee
,
Mihaela van der Schaar
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data.
CoRR
(2021)
Jeroen Berrevoets
,
Alicia Curth
,
Ioana Bica
,
Eoin F. McKinney
,
Mihaela van der Schaar
Disentangled Counterfactual Recurrent Networks for Treatment Effect Inference over Time.
CoRR
(2021)
Zhaozhi Qian
,
Alicia Curth
,
Mihaela van der Schaar
Estimating Multi-cause Treatment Effects via Single-cause Perturbation.
NeurIPS
(2021)
Alicia Curth
,
Mihaela van der Schaar
Doing Great at Estimating CATE? On the Neglected Assumptions in Benchmark Comparisons of Treatment Effect Estimators.
CoRR
(2021)
Alicia Curth
,
Mihaela van der Schaar
On Inductive Biases for Heterogeneous Treatment Effect Estimation.
NeurIPS
(2021)
Alicia Curth
,
Mihaela van der Schaar
Nonparametric Estimation of Heterogeneous Treatment Effects: From Theory to Learning Algorithms.
CoRR
(2021)
Alicia Curth
,
Changhee Lee
,
Mihaela van der Schaar
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data.
NeurIPS
(2021)
Alicia Curth
,
Mihaela van der Schaar
Nonparametric Estimation of Heterogeneous Treatment Effects: From Theory to Learning Algorithms.
AISTATS
(2021)
Alicia Curth
,
Mihaela van der Schaar
On Inductive Biases for Heterogeneous Treatment Effect Estimation.
CoRR
(2021)
Alicia Curth
,
David Svensson
,
James Weatherall
,
Mihaela van der Schaar
Really Doing Great at Estimating CATE? A Critical Look at ML Benchmarking Practices in Treatment Effect Estimation.
NeurIPS Datasets and Benchmarks
(2021)
Alicia Curth
,
Patrick Thoral
,
Wilco van den Wildenberg
,
Peter Bijlstra
,
Daan de Bruin
,
Paul W. G. Elbers
,
Mattia Fornasa
Transferring Clinical Prediction Models Across Hospitals and Electronic Health Record Systems.
PKDD/ECML Workshops (1)
(2019)