Trainable Filters for the Identification of Anomalies in Cosmogenic Isotope Data.
Andreas C. NeocleousGeorge AzzopardiMargot KuitemsAndrea ScifoMichael DeePublished in: IEEE Access (2019)
Keyphrases
- data collection
- data sets
- database
- data processing
- complex data
- data distribution
- data structure
- spatial data
- statistical analysis
- original data
- sensor data
- synthetic data
- data mining techniques
- small number
- image data
- prior knowledge
- high quality
- learning algorithm
- dimensionality reduction
- data mining applications
- data quality
- training data
- raw data
- data acquisition
- data points
- missing data
- knowledge discovery
- high dimensional data
- intrusion detection
- databases