Finding the smallest or largest element of a tensor from its low-rank factors.
Nicholas D. SidiropoulosParis A. KarakasisAritra KonarPublished in: CoRR (2022)
Keyphrases
- low rank
- trace norm
- high order
- frobenius norm
- tensor decomposition
- missing data
- matrix factorization
- linear combination
- convex optimization
- matrix completion
- rank minimization
- low rank matrix
- matrix decomposition
- singular value decomposition
- semi supervised
- kernel matrix
- higher order
- high dimensional data
- low rank approximation
- low rank matrices
- robust principal component analysis
- dimensionality reduction
- singular values
- tensor factorization
- multi task
- minimization problems
- data matrix
- image sequences
- collaborative filtering
- high dimensional
- pairwise