Incorporating machine learning models and remote sensing to assess the spatial distribution of saturated hydraulic conductivity in a light-textured soil.
Meisam RezaeiSeyed Rohollah MousaviAsghar RahmaniMojtaba ZeraatpishehMehdi RahmatiMojtaba PakparvarVahid Alah Jahandideh MahjenabadiPiet SeuntjensWim CornelisPublished in: Comput. Electron. Agric. (2023)
Keyphrases
- spatial distribution
- remote sensing
- machine learning models
- change detection
- machine learning approaches
- spam filtering
- spatial information
- machine learning algorithms
- multispectral
- remote sensing imagery
- remote sensing images
- hyperspectral
- high resolution
- automatic image registration
- image analysis
- machine learning
- image processing
- high spatial resolution
- remote sensing data
- satellite images
- digital image analysis
- predictive model
- learning models
- remote sensed images
- hyperspectral images
- land cover
- hyperspectral imagery
- pattern recognition
- image classification
- satellite data
- hyperspectral imaging
- spatial resolution
- learning tasks
- machine learning methods
- semi supervised learning
- earth observation
- high quality
- decision trees
- computer vision